Критерии согласия. Проверка гипотез о виде функции
⇐ ПредыдущаяСтр 5 из 5 Распределения
В одних случаях закон распределения может быть установлен теоретически на основании выбранной модели рассматриваемого процесса. В других случаях функцию распределения выбирают априорно. Однако для получения надёжных решений вероятностных задач в каждом отдельном случае необходима проверка соответствия опытных данных используемому закону распределения. Наиболее простым, но весьма приближённым методом оценки согласия результатов эксперимента с тем или иным законом распределения является графический метод. Опытные данные сравнивают с графиком принятой функции распределения. Если экспериментальные точки ложатся вблизи кривой со случайными отклонениями влево и вправо, то опытные данные соответствуют рассматриваемому закону. Данный способ является субъективным и используется на практике лишь в качестве первого приближения. Критерий согласия Пирсона (χ2) применяют для проверки гипотезу о соответствии эмпирического распределения предполагаемому теоретическому распределению при большом объёме выборки (n ≥ 100). Критерий применим для любых видов функций, даже при неизвестных значениях их параметров. Использование критерия χ2 предусматривает разбиение размаха варьирования выборки на интервалы и определения числа наблюдений (частоты) n j для каждого из e интервалов. Для удобства оценок параметров распределения интервалы выбирают одинаковой длины. Число интервалов зависит от объёма выборки. Обычно принимают: при n = 100 e = 10 … 15, при n = 200 e = 15 … 20, при n = 400 e = 25 … 30, при n = 1000 e = 35 … 40. Интервалы, содержащие менее пяти наблюдений объединяют с соседними. Статистикой критерия Пирсона служит величина
χ2 = , (3.30) где p j – вероятность попадания изучаемой случайной величины в j -й интервал, вычисляемая в соответствии с гипотетическим законом распределения. При вычислении вероятности p j нужно иметь в виду, что левая граница первого интервала и правая последнего должны совпадать с границами области возможных значений случайной величины. Например, при нормальном распределении первый интервал простирается до –∞, а последний – до +∞. Если выполняется неравенство χ2 ≤ χ2α, (3.31) при уровне значимости α и числе степеней свободы k = e – m – 1, (m – число параметров, оцениваемых по рассматриваемой выборке, для нормального закона распределения m = 2), то нулевую гипотезу не отвергают. При несоблюдении указанного неравенства принимают альтернативную гипотезу о принадлежности выборки неизвестному распределению. Недостатком критерия согласия Пирсона является потеря части первоначальной информации, связанная с необходимостью группировки результатов наблюдений в интервалы. В связи с этим рекомендуется дополнять проверку соответствия распределения по критерию χ2 другими критериями. Особенно это необходимо при сравнительно малом объёме выборки (n ≈ 100). Пример 3.9. Проверить с помощью критерия согласия χ2 гипотезу о нормальном распределении данных в примере 2.2. Принять уровень значимости α = 0,05. Оценка вероятности попадания значения характеристики в интервал (6-ой столбец) представляет собой разность значений функций Лапласа на правой и левой границе интервала. Если интервалы объединяются, вычисляют разность значений функции на границах объединённого интервала. Сумма чисел p j в 6 столбце всегда будет равна единице. Сумма в 7 столбце должна равняться сумме в 3-м столбце. Таблица 3.6
Для α=0,05 и k = 8 – 2 –1 = 5(8 – число интервалов после объединения, 2 – число параметров, оцениваемых по выборке (, s)) χ2 = 2,547 < χ20,05 =11,1 Заключение: опытные данные не противоречат нормальному закону распределения.
Таблица 3.7 – Значение нормированной функции нормального распределения (функции Лапласа)
Приложение А
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|