Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

CAS PubMed Article Google Scholar




CAS PubMed Article Google Scholar

168. 168.

Cuicui G, Jiangfeng D, Lina Z, Liming W, Ying L, Denghua L, et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc Natl Acad Sci U S A. 2011; 108(41): 16968–73.

Article Google Scholar

169. 169.

Li Y, Feng L, Shi X, Wang X, Yang Y, Yang K, et al. Surface coating-dependent cytotoxicity and degradation of graphene derivatives: towards the design of non-toxic, degradable nano-graphene. Small. 2014; 10(8): 1544–54.

CAS PubMed Article Google Scholar

170. 170.

Gurunathan S, Han J, Park JH, Kim JH. An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231). Int J Nanomed. 2014; 9: 1783–97.

Article Google Scholar

171. 171.

Yuan J, Gao H, Ching CB. Comparative protein profile of human hepatoma HepG2 cells treated with graphene and single-walled carbon nanotubes: an iTRAQ-coupled 2D LC-MS/MS proteome analysis. Toxicol Lett. 2011; 207(3): 213–21.

CAS PubMed Article Google Scholar

172. 172.

Tomasio SM, Walsh TR. Modeling the binding affinity of peptides for graphitic surfaces. Influences of aromatic content and interfacial shape. J Phys Chem C. 2009; 113(20): 8778–85.

CAS Article Google Scholar

173. 173.

Akhavan O, Ghaderi E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano. 2010; 4(10): 5731–6.

CAS PubMed Article Google Scholar

174. 174.

Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 2011; 25: 287–99.

PubMed PubMed Central Article Google Scholar

175. 175.

Waiwijit U, Kandhavivorn W, Oonkhanond B, Lomas T, Phokaratkul D, Wisitsoraat A, et al. Cytotoxicity assessment of MDA-MB-231 breast cancer cells on screen-printed graphene-carbon paste substrate. Colloids Surf B Biointerf. 2014; 113: 190–7.

CAS Article Google Scholar

176. 176.

Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, et al. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials. 2014; 35(19): 5041–8.

CAS PubMed Article Google Scholar

177. 177.

Chen M, Yin J, Liang Y, Yuan S, Wang F, Song M, et al. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish. Aqua Toxicol. 2016; 174(1879–1514 (Electronic)): 54–60.

CAS Article Google Scholar

178. 178.

Meng C, Zhi X, Li C, Li C, Chen Z, Qiu X, et al. Graphene oxides decorated with carnosine as an adjuvant to modulate innate immune and improve adaptive immunity in vivo. ACS Nano. 2016; 10(1936-086X (Electronic)): 2203–13.

CAS PubMed Article Google Scholar

179. 179.

Ravichandran P, Baluchamy S, Sadanandan B, Gopikrishnan R, Biradar S, Ramesh V, et al. Multiwalled carbon nanotubes activate NF-κ B and AP-1 signaling pathways to induce apoptosis in rat lung epithelial cells. Apoptosis. 2010; 15(12): 1507–16.

CAS PubMed Article Google Scholar

180. 180.

Lammel T, Boisseaux P, Fernandez-Cruz ML, Navas JM. Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part Fibre Toxicol. 2013; 10: 27.

CAS PubMed PubMed Central Article Google Scholar

181. 181.

Gurunathan S, Han JW, Eppakayala V, Kim JH. Green synthesis of graphene and its cytotoxic effects in human breast cancer cells. Int J Nanomedicine. 2013; 8: 1015–27.

PubMed PubMed Central Article CAS Google Scholar

182. 182.

Salas EC, Sun Z, Luttge A, Tour JM. Reduction of graphene oxide via bacterial respiration. ACS Nano. 2010; 4(8): 4852–6.

CAS PubMed Article Google Scholar

183. 183.

Shekaramiz E. Immobilization of mitochondria on graphene. Dissert Theses Gradworks. 2012; 217(1): 120–31.

Google Scholar

184. 184.

Park EJ, Lee GH, Han BS, Lee BS, Lee S, Cho MH, et al. Toxic response of graphene nanoplatelets in vivo and in vitro. Arch Toxicol. 2015; 89(9): 1557–68.

CAS PubMed Article Google Scholar

185. 185.

Chatterjee N, Yang J, Choi J. Differential genotoxic and epigenotoxic effects of graphene family nanomaterials (GFNs) in human bronchial epithelial cells. Mutat Res Gen Tox En. 2016; 798(1879–3592 (Electronic)): 1–10.

Article CAS Google Scholar

186. 186.

Ivask A, Voelcker NH, Seabrook SA, Hor M, Kirby JK, Fenech M, et al. DNA melting and genotoxicity induced by silver nanoparticles and graphene. Chem Res Toxicol. 2015; 28(1520–5010 (Electronic)): 1023–35.

CAS PubMed Article Google Scholar

187. 187.

Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology. 2014; 8(3): 233–78.

CAS PubMed Article Google Scholar

188. 188.

Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, et al. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. Nanoscale. 2015; 7(6): 2154–98.

CAS PubMed Article Google Scholar

189. 189.

Zhao X. Self-assembly of DNA segments on graphene and carbon nanotube arrays in aqueous solution: A molecular simulation study. J Phys Chem C. 2011; 115(14): 6181–9.

CAS Article Google Scholar

190. 190.

Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010; 40(2): 179–204.

CAS PubMed PubMed Central Article Google Scholar

191. 191.

Satoshi F, Macconmara MP, Maung AA, Yan Z, Mannick JA, Lederer JA, et al. Platelet depletion in mice increases mortality after thermal injury. Blood. 2006; 107(11): 4399–406.

Article CAS Google Scholar

192. 192.

Chen GY, Yang HJ, Lu CH, Chao YC, Hwang SM, Chen CL, et al. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials. 2012; 33(27): 6559–69.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...