Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

CAS PubMed Article Google Scholar




CAS PubMed Article Google Scholar

193. 193.

Zhou H, Zhao K, Li W, Yang N, Liu Y, Chen C, et al. The interactions between pristine graphene and macrophages and the production of cytokines/chemokines via TLR- and NF-kappaB-related signaling pathways. Biomaterials. 2012; 33(29): 6933–42.

CAS PubMed Article Google Scholar

194. 194.

Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol. 2009; 1(1943–0264 (Electronic)): a001651.

PubMed PubMed Central Google Scholar

195. 195.

Hengartner MO. The biochemistry of apoptosis. Nature. 2000; 407(6805): 770–6.

CAS PubMed Article Google Scholar

196. 196.

Matesanz MC, Vila M, Feito MJ, Linares J, Goncalves G, Vallet-Regi M, et al. The effects of graphene oxide nanosheets localized on F-actin filaments on cell-cycle alterations. Biomaterials. 2013; 34(5): 1562–9.

CAS PubMed Article Google Scholar

197. 197.

Yao Y, Costa M. Genetic and epigenetic effects of nanoparticles. J Mol Genet Med. 2013; 7: 86.

Google Scholar

198. 198.

Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 2012; 9(1743–8977 (Electronic)): 1.

Google Scholar

199. 199.

Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cel. 2010; 140(1097–4172 (Electronic)): 313–26.

CAS Article Google Scholar

200. 200.

Patel AS, Lin L, Geyer A, Haspel JA, An CH, Cao J, et al. Autophagy in idiopathic pulmonary fibrosis. PLoS One. 2012; 7(1932–6203 (Electronic)): e41394.

CAS PubMed PubMed Central Article Google Scholar

201. 201.

Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011; 469(7330): 323–35.

CAS PubMed PubMed Central Article Google Scholar

202. 202.

Kenzaoui BH, Bernasconi CC, Guney-Ayra S, Juillerat-Jeanneret L. Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain-derived endothelial cells. Biochem J. 2012; 441(1470–8728 (Electronic)): 813–21.

Google Scholar

203. 203.

Hussain S, Garantziotis S. Interplay between apoptotic and autophagy pathways after exposure to cerium dioxide nanoparticles in human monocytes. Autophagy. 2013; 9(1554–8635 (Electronic)): 101–3.

CAS PubMed PubMed Central Article Google Scholar

204. 204.

Sun T, Yan Y, Zhao Y, Guo F, Jiang C. Copper oxide nanoparticles induce autophagic cell death in A549 cells. PLoS One. 2012; 7(1932–6203 (Electronic)): e43442.

CAS PubMed PubMed Central Article Google Scholar

205. 205.

Chen GY, Meng CL, Lin KC, Tuan HY, Yang HJ, Chen CL, et al. Graphene oxide as a chemosensitizer: Diverted autophagic flux, enhanced nuclear import, elevated necrosis and improved antitumor effects. Biomaterials. 2015; 40: 12–22.

PubMed Article CAS Google Scholar

206. 206.

Chen GY, Chen CL, Tuan HY, Yuan PX, Li KC, Yang HJ, et al. Graphene oxide triggers toll-like receptors/autophagy responses in vitro and inhibits tumor growth in vivo. Adv Healthc Mater. 2014; 3(9): 1486–95.

CAS PubMed Article Google Scholar

207. 207.

Wan B, Wang ZX, Lv QY, Dong PX, Zhao LX, Yang Y, et al. Single-walled carbon nanotubes and graphene oxides induce autophagosome accumulation and lysosome impairment in primarily cultured murine peritoneal macrophages. Toxicol Lett. 2013; 221(1879–3169 (Electronic)): 118–27.

CAS PubMed Article Google Scholar

208. 208.

Markovic ZM, Ristic BZ, Arsikin KM, Klisic DG, Harhaji-Trajkovic LM, Todorovic-Markovic BM, et al. Graphene quantum dots as autophagy-inducing photodynamic agents. Biomaterials. 2012; 33(29): 7084–92.

CAS PubMed Article Google Scholar

209. 209.

Sanjuan MA, Dillon CP, Tait SW, Moshiach S, Dorsey F, Connell S, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature. 2007; 450(7173): 1253–7.

CAS PubMed Article Google Scholar

210. 210.

Sasidharan A, Swaroop S, Chandran P, Nair S, Koyakutty M. Cellular and molecular mechanistic insight into the DNA-damaging potential of few-layer graphene in human primary endothelial cells. Nanomed. 2016; 12(1549–9642 (Electronic)): 1347–55.

CAS Google Scholar

211. 211.

Yang H, Rivera Z, Jube S, Nasu M, Bertino P, Goparaju C, et al. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci U S A. 2010; 107(1091–6490 (Electronic)): 12611–6.

CAS PubMed PubMed Central Article Google Scholar

212. 212.

Raucci A, Palumbo R, Bianchi ME. HMGB1: a signal of necrosis. Autoimmunity. 2007; 40(4): 285–9.

CAS PubMed Article Google Scholar

213. 213.

Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet. 2013; 14(3): 204–20.

CAS PubMed Article Google Scholar

214. 214.

Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 2012; 19(6): 586–93.

CAS PubMed Article Google Scholar

215. 215.

Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010; 79(79): 321–49.

CAS PubMed PubMed Central Article Google Scholar

216. 216.

Dubey P, Matai I, Kumar SU, Sachdev A, Bhushan B, Gopinath P. Perturbation of cellular mechanistic system by silver nanoparticle toxicity: Cytotoxic, genotoxic and epigenetic potentials. Adv Colloid Interf Sci. 2015; 221: 4–21.

CAS Article Google Scholar

217. 217.

Collins AR, Ferguson LR. DNA repair as a biomarker. Mutat Res. 2012; 736(1–2): 2–4.

CAS PubMed Article Google Scholar

218. 218.

Zhao Y, Wu Q, Wang D. An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials. 2016; 79(1878–5905 (Electronic)): 15–24.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...