Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

CAS PubMed Article Google Scholar




CAS PubMed Article Google Scholar

92. 92.

Li Y, Yuan H, von dem Bussche A, Creighton M, Hurt RH, Kane AB, et al. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner site. Proc Natl Acad Sci U S A. 2013; 110(1091–6490 (Electronic)): 12295–300.

CAS PubMed PubMed Central Article Google Scholar

93. 93.

Qu G, Liu S, Zhang S, Wang L, Wang X, Sun B, et al. Graphene oxide induces toll-like receptor 4 (TLR4)-dependent necrosis in macrophages. ACS Nano. 2013; 7(7): 5732–45.

CAS PubMed Article Google Scholar

94. 94.

Ma J, Liu R, Wang X, Liu Q, Chen Y, Valle RP, et al. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating Pro-inflammatory responses in cells and animals. ACS Nano. 2015; 9(10): 10498–515.

CAS PubMed Article Google Scholar

95. 95.

Mao L, Hu M, Pan B, Xie Y, Petersen EJ. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part Fibre Toxicol. 2016; 13(1743–8977 (Electronic)): 1.

Google Scholar

96. 96.

Park EJ, Lee SJ, Lee K, Choi YC, Lee BS, Lee GH, et al. Pulmonary persistence of graphene nanoplatelets may disturb physiological and immunological homeostasis. J Appl Toxicol. 2016.

97. 97.

Kim JK, Shin JH, Lee JS, Hwang JH, Lee JH, Baek JE, et al. 28-Day inhalation toxicity of graphene nanoplatelets in Sprague–Dawley rats. Nanotoxicology. 2016; 10(7): 891–901.

CAS PubMed Article Google Scholar

98. 98.

Singh SK, Singh MK, Kulkarni PP, Sonkar VK, Gracio JJ, Dash D. Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano. 2012; 6(3): 2731–40.

CAS PubMed Article Google Scholar

99. 99.

Duch MC, Budinger GR, Liang YT, Soberanes S, Urich D, Chiarella SE, et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 2011; 11(12): 5201–7.

PubMed PubMed Central Article CAS Google Scholar

100. 100.

Wang X, Duch MC, Mansukhani N, Ji Z, Liao YP, Wang M, et al. Use of a pro-fibrogenic mechanism-based predictive toxicological approach for tiered testing and decision analysis of carbonaceous nanomaterials. ACS Nano. 2015; 9(1936-086X (Electronic)): 3032–43.

CAS PubMed PubMed Central Article Google Scholar

101. 101.

Sawosz E, Jaworski S, Kutwin M, Hotowy A, Wierzbicki M, Grodzik M, et al. Toxicity of pristine graphene in experiments in a chicken embryo model. Int J Nanomed. 2014; 9: 3913–22.

CAS Google Scholar

102. 102.

Liu XT, Mu XY, Wu XL, Meng LX, Guan WB, Ma YQ, et al. Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos. Biomed Environ Sci. 2014; 27(9): 676–83.

PubMed Google Scholar

103. 103.

Chen Y, Hu X, Sun J, Zhou Q. Specific nanotoxicity of graphene oxide during zebrafish embryogenesis. Nanotoxicology. 2016; 10(1): 42–52.

CAS PubMed Google Scholar

104. 104.

Sasidharan A, Panchakarla LS, Sadanandan AR, Ashokan A, Chandran P, Girish CM, et al. Hemocompatibility and macrophage response of pristine and functionalized graphene. Smal. 2012; 8(8): 1251–63.

CAS Article Google Scholar

105. 105.

Ding Z, Zhang Z, Ma H, Chen Y. In vitro hemocompatibility and toxic mechanism of graphene oxide on human peripheral blood T lymphocytes and serum albumin. ACS Appl Mater Interf. 2014; 6(22): 19797–807.

CAS Article Google Scholar

106. 106.

Liao KH, Lin YS, Macosko CW, Haynes CL. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater Interfaces. 2011; 3(7): 2607–15.

CAS PubMed Article Google Scholar

107. 107.

Kouhi SMM, Lahouti M, Ganjeali A, Entezari MH. Long-term exposure of rapeseed (Brassica napus L. ) to ZnO nanoparticles: anatomical and ultrastructural responses. Environ Sci Pollut Res. 2015; 22(1614–7499 (Electronic)): 10733–43.

Article CAS Google Scholar

108. 108.

Vales G, Rubio L, Marcos R. Long-term exposures to low doses of titanium dioxide nanoparticles induce cell transformation, but not genotoxic damage in BEAS-2B cells. Nanotoxicology. 2015; 9(1743–5404 (Electronic)): 568–78.

CAS PubMed Article Google Scholar

109. 109.

Sancey L, Kotb S, Truillet C, Appaix F, Marais A, Thomas E, et al. Long-term in vivo clearance of gadolinium-based AGuIX nanoparticles and their biocompatibility after systemic injection. ACS Nano. 2015; 9(1936-086X (Electronic)): 2477–88.

CAS PubMed Article Google Scholar

110. 110.

Chatterjee N, Eom HJ, Choi J. A systems toxicology approach to the surface functionality control of graphene-cell interactions. Biomaterials. 2014; 35: 1109–27.

CAS PubMed Article Google Scholar

111. 111.

Jaworski S, Sawosz E, Grodzik M, Winnicka A, Prasek M, Wierzbicki M, et al. In vitro evaluation of the effects of graphene platelets on glioblastoma multiforme cells. Int J Nanomed. 2013; 8: 413–20.

Google Scholar

112. 112.

Liu Y, Luo Y, Wu J, Wang Y, Yang X, Yang R, et al. Graphene oxide can induce in vitro and in vivo mutagenesis. Sci Rep. 2013; 3: 3469.

PubMed Google Scholar

113. 113.

Vallabani NV, Mittal S, Shukla RK, Pandey AK, Dhakate SR, Pasricha R, et al. Toxicity of graphene in normal human lung cells (BEAS-2B). J Biomed Nanotechnol. 2011; 7(1): 106–7.

CAS PubMed Article Google Scholar

114. 114.

Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, et al. Graphene quantum dots derived from carbon fibers. Nano Lett. 2012; 12(1530–6992 (Electronic)): 844–9.

CAS PubMed Article Google Scholar

115. 115.

Shang W, Zhang X, Zhang M, Fan Z, Sun Y, Han M, et al. The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale. 2014; 6(2040–3372 (Electronic)): 5799–806.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...