Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

CAS PubMed Article Google Scholar




CAS PubMed Article Google Scholar

67. 67.

Buerkithurnherr T, Von MU, Wick P. Knocking at the door of the unborn child: engineered nanoparticles at the human placental barrier. Swiss Med Wkly. 2012; 142: w13559.

Google Scholar

68. 68.

Yang H, Sun C, Fan Z, Tian X, Yan L, Du L, et al. Effects of gestational age and surface modification on materno-fetal transfer of nanoparticles in murine pregnancy. Sci Rep. 2012; 2(46): 847.

PubMed PubMed Central Google Scholar

69. 69.

Huang X, Zhang F, Sun X, Choi KY, Niu G, Zhang G, et al. The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development. Biomaterials. 2014; 35(2): 856–65.

CAS PubMed PubMed Central Article Google Scholar

70. 70.

Qi W, Bi J, Zhang X, Wang J, Wang J, Liu P, et al. Damaging effects of multi-walled carbon nanotubes on pregnant mice with different pregnancy times. Sci Rep. 2014; 4(3): doi: 10. 1038/srep04352.

71. 71.

Du J, Wang S, You H, Jiang R, Zhuang C, Zhang X. Developmental toxicity and DNA damage to zebrafish induced by perfluorooctane sulfonate in the presence of ZnO nanoparticles. Environ Toxicol. 2014; 31(1522–7278 (Electronic)): 360–71.

PubMed Google Scholar

72. 72.

Zhou Z, Son J, Harper B, Zhou Z, Harper S. Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish. Beilstein J Nanotechnol. 2015; 6(2190–4286 (Electronic)): 1568–79.

CAS PubMed PubMed Central Article Google Scholar

73. 73.

Rollerova E, Tulinska J, Liskova A, Kuricova M, Kovriznych J, Mlynarcikova A, et al. Titanium dioxide nanoparticles: some aspects of toxicity/focus on the development. Endocr Reg. 2014; 49(1210–0668 (Print)): 97–112.

Google Scholar

74. 74.

Warheit DB, Boatman R, Brown SC. Developmental toxicity studies with 6 forms of titanium dioxide test materials (3 pigment-different grade & 3 nanoscale) demonstrate an absence of effects in orally-exposed rats. Reg Toxicol Pharmacol. 2015; 73(1096–0295 (Electronic)): 887–96.

CAS Article Google Scholar

75. 75.

Ema M, Gamo M, Honda K. Developmental toxicity of engineered nanomaterials in rodents. Toxicol Appl Pharmacol. 2015; 299(1096–0333 (Electronic)): 47–52.

PubMed Google Scholar

76. 76.

Li Z, Geng Y, Zhang X, Qi W, Fan Q, Li Y, et al. Biodistribution of co-exposure to multi-walled carbon nanotubes and graphene oxide nanoplatelets radiotracers. J Nanopart Res. 2011; 13(7): 2939–47.

Article CAS Google Scholar

77. 77.

Wang Y, Li Z, Hu D, Lin CT, Li J, Lin Y. Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc. 2010; 132(27): 9274–6.

CAS PubMed Article Google Scholar

78. 78.

Liu JH, Yang ST, Wang H, Chang Y, Cao A, Liu Y. Effect of size and dose on the biodistribution of graphene oxide in mice. Nanomedicine. 2012; 7(12): 1801–12.

CAS PubMed Article Google Scholar

79. 79.

Zhang S, Yang K, Feng L, Liu Z. In vitro and in vivo behaviors of dextran functionalized graphene. Carbon. 2011; 49(12): 4040–9.

CAS Article Google Scholar

80. 80.

Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schaffler M, et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm. 2011; 77(3): 407–16.

CAS PubMed Article Google Scholar

81. 81.

Li B, Zhang XY, Yang JZ, Zhang YJ, Li WX, Fan CH, et al. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. Int J Nanomedicine. 2014; 9: 4697–707.

PubMed PubMed Central Article CAS Google Scholar

82. 82.

Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano. 2010; 4(6): 3181–6.

CAS PubMed Article Google Scholar

83. 83.

Li Y, Liu Y, Fu Y, Wei T, Le Guyader L, Gao G, et al. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials. 2012; 33(2): 402–11.

PubMed Article CAS Google Scholar

84. 84.

Sydlik SA, Jhunjhunwala S, Webber MJ, Anderson DG, Langer R. In vivo compatibility of graphene oxide with differing oxidation states. ACS Nano. 2015; 9(4): 3866–74.

CAS PubMed PubMed Central Article Google Scholar

85. 85.

Mytych J, Wnuk M. Nanoparticle technology as a double-edged sword: cytotoxic, genotoxic and epigenetic effects on living cells. J Biomater Nanobiotechnol. 2013; 4: 53–63.

Article CAS Google Scholar

86. 86.

Peng C, Hu W, Zhou Y, Fan C, Huang Q. Intracellular imaging with a graphene-based fluorescent probe. Small. 2010; 6(15): 1686–92.

CAS PubMed Article Google Scholar

87. 87.

Wang D, Zhu L, Chen JF, Dai L. Can graphene quantum dots cause DNA damage in cells? Nanoscale. 2015; 7(21): 9894–901.

CAS PubMed Article Google Scholar

88. 88.

Mu Q, Su G, Li L, Gilbertson BO, Yu LH, Zhang Q, et al. Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl Mater Interf. 2012; 4(4): 2259–66.

CAS Article Google Scholar

89. 89.

Xu M, Zhu J, Wang F, Xiong Y, Wu Y, Wang Q, et al. Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: poly(acrylic acid)-functionalization is superior to PEGylation. ACS Nano. 2016; 10: 3267–81.

CAS PubMed Article Google Scholar

90. 90.

Kostarelos K, Novoselov KS. Materials science. Exploring the interface of graphene and biology. Science. 2014; 344(6181): 261–3.

CAS PubMed Article Google Scholar

91. 91.

Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CN, et al. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale. 2011; 3(6): 2461–4.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...