Законы и формулы к выполнению задач по теме №3
1. Закон Кулона:
где F – сила взаимодействия точечных зарядов Q1 и Q2; r – расстояние между зарядами; – диэлектрическая проницаемость среды; ε0 – электрическая постоянная. 2. Напряженность электрического поля:
3. Потенциал электрического поля:
где П – потенциальная энергия точечного положительного заряда Q, находящегося в данной точке поля (при условии, что потенциальная энергия заряда, удаленного в бесконечность, равна нулю). 4. Напряженность и потенциал поля, создаваемого системой точечных зарядов (принцип суперпозиции электрических полей):
где 5. Напряженность и потенциал поля, создаваемого точечным зарядом:
где r – расстояние от заряда Q до точки, в которой определяются напряженность и потенциал. 6. Напряженность и потенциал поля, создаваемого проводящей заряженной сферой радиуса R на расстоянии r от центра сферы (заряд сферы Q):
· если r<R, то E=0; · если r=R, то · если r>R, то 7. Линейная плотность заряда (заряд, приходящийся на единицу длины заряженного тела):
8. Поверхностная плотность заряда (заряд, приходящийся на единицу площади поверхности заряженного тела):
9. Напряженность и потенциал поля, создаваемого распределенными зарядами. Если заряд равномерно распределен вдоль линии с линейной плотностью τ, то на линии выделяется малый участок длины dl с зарядом dQ=τdl. Такой заряд можно рассматривать как точечный. Напряженность dE и потенциал dφ электрического поля, создаваемого зарядом dQ, определяется формулами:
где r – радиус-вектор, направленный от выделенного элемента dl к точке, в которой вычисляется напряженность.
Используя принцип суперпозиции электрических полей, находим интегрированием напряженность
Интегрирование ведется вдоль всей длины l заряженной линии. 10. Напряженность поля, создаваемого бесконечной прямой равномерно заряженной линией или бесконечно длинным цилиндром:
где r – расстояние от нити или оси цилиндра до точки, напряженность поля в которой вычисляется. 11. Напряженность поля, создаваемого бесконечной равномерно заряженной плоскостью:
12. Связь потенциала с напряженностью: a) в случае однородного поля
b) в случае поля, обладающего центральной или осевой симметрией:
13. Работа сил поля по перемещению заряда Q из точки поля с потенциалом φ1 в точку с потенциалом φ2:
14. Электроемкость:
где φ – потенциал проводника (при условии, что в бесконечности потенциал проводника принимается равным нулю); U – разность потенциалов пластин конденсатора. 15. Электроемкость плоского конденсатора:
где S – площадь пластины (одной) конденсатора; d – расстояние между пластинами. 16. Электроемкость батареи конденсаторов: · а) при последовательном соединении: · б) при параллельном соединение: где N – число конденсаторов в батарее. 17. Энергия заряженного конденсатора:
Постоянный ток 18. Сила тока:
где Q – заряд, прошедший через поперечное сечение проводника за время t. 19. Закон Ома: а) для участка цепи, не содержащего ЭДС, где φ1 – φ2=U – разность потенциалов (напряжение) на концах участка цепи; R – сопротивление участка; б) для участка цепи, содержащего ЭДС, где ε – ЭДС источника тока; R – полное сопротивление участка (сумма внешних и внутренних сопротивлений); в) для замкнутой (полной) цепи
где r – внутреннее сопротивление цепи; R – внешнее сопротивление цепи. 20. Сопротивление R и проводимость G проводника:
где ρ – удельное сопротивление; σ – удельная проводимость; l – длина проводника; S – площадь поперечного сечения проводника. 21. Сопротивление системы проводников: · при последовательном соединении · при параллельном соединении где Ri – сопротивление i -го проводника. 22. Работа тока:
Первая формула справедлива для любого участка цепи, на концах которого поддерживается напряжение U, последние две – для участка, не содержащего ЭДС. 23. Мощность тока:
24. Закон Джоуля- Ленца:
Электромагнетизм
25. Связь магнитной индукции
где μ – магнитная проницаемость изотропной среды; μ0 – магнитная постоянная. 26. Сила Ампера:
где α – угол между векторами 27. Магнитный поток:
где S – площадь контура; α – угол между нормалью к плоскости контура и вектором магнитной индукции. 28. Момент сил, вращающих контур с током в магнитном поле:
Здесь pm – магнитный момент контура с током. 29. Магнитный момент контура с током:
где S – площадь контура, N – число витков. 30. ЭДС индукции:
31. Разность потенциалов на концах проводника, движущегося со скоростью
где l – длина проводника; α – угол между векторами 32. ЭДС самоиндукции:
33. Индуктивность соленоида:
где n – число витков, приходящееся на единицу длины соленоида; V – объем соленоида. 34. Энергия магнитного поля:
35. Объемная плотность энергии магнитного поля (энергия в единице объема):
где B – магнитная индукция; H – напряженность магнитного поля.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|