Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Пример 2: сопоставление двух эмпирических распределений




Интересно сопоставить данные, полученные в предыдущем при­мере, с данными обследования X. Кларом 800 испытуемых (Klar H ., 1974, р. 67). X. Кларом было показано, что желтый цвет является единственным цветом, распределение которого по 8 позициям не отли­чается от равномерного. Для сопоставлений им использовался метод % Полученные им эмпирические частоты представлены в Табл. 4.18.

Таблица 4.18

Эмпирические частоты попадания желтого цвета на каждую из 8 пози­ций в исследовании X. Клара (по: Klar H., 1974) (n =800)

Сформулируем гипотезы.

Н0: Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара не различаются.

H1: Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара отличаются друг от друга.

Поскольку в данном случае мы будем сопоставлять накопленные эмпирические частости по каждому разряду, теоретические частости нас не интересуют.

Все расчеты будем проводить в таблице по алгоритму 15.

 

 

АЛГОРИТМ 15

Расчет критерия λ при сопоставлении двух эмпирических распределений

1. Занести в таблицу наименования разрядов и соответствующие им эмпирические
частоты, полученные в распределении 1 (первый столбец) и в распределении 2
(второй столбец).

2. Подсчитать эмпирические частости по каждому разряду для распределения 1
по формуле:

f *э= f э/ n 1

где f э - эмпирическая частота в данном разряде;

п 1 - количество наблюдений в выборке. Занести эмпирические частости распределения 1 в третий столбец.

3. Подсчитать эмпирические частости по каждому разряду для распределения 2
по формуле:

f *э= f э/ n 2

где f э - эмпирическая частота в данном разряде;

n2 - количество наблюдений во 2-й выборке.

Занести эмпирические частости распределения 2 в четвертый столбец таблицы.

4. Подсчитать накопленные эмпирические частости для распределения 1 по формуле:

где Σ f *j-1 - частость, накопленная на предыдущих разрядах;

j - порядковый номер разряда;

f* j-1 - частость данного разряда.

Полученные результаты записать в пятый столбец.

5. Подсчитать накопленные эмпирические частости для распределения 2 по той
же формуле и записать результат в шестой столбец.

6. Подсчитать разности между накопленными частостями по каждому разряду.
Записать в седьмой столбец абсолютные величины разностей, без их знака.
Обозначить их как d.

7. Определить по седьмому столбцу наибольшую абсолютную величину разности

8. Подсчитать значение критерия λ по формуле:

где п 1 - количество наблюдений в первой выборке;

n 2 - количество наблюдений во второй выборке.

9. По Табл. XI Приложения 1 определить, какому уровню статистической зна-
чимости соответствует полученное значение λ.

Если λэмп > 1,36, различия между распределениями достоверны.

Последовательность выборок может быть выбрана произвольно, так как расхождения между ними оцениваются по абсолютной величине разностей. В нашем случае первой будем считать отечественную выбор­ку, второй - выборку Клара.

Таблица 4.19

Расчет критерия при сопоставлении эмпирических распределений желтого цвета в отечественной выборке (n 1=102) и выборке Клара (n 2=800)

Максимальная разность между накопленными эмпирическими частостями составляет 0,118 и падает на второй разряд.

В соответствии с пунктом 8 алгоритма 15 подсчитаем значение Я,:

По Табл. XI Приложения 1 определяем уровень статистической значимости полученного значения: р=0,16

Построим для наглядности ось значимости.

На оси указаны критические значения λ, соответствующие принятым уровням значимости: λ 0,05=1 ,36, λ0,01=1,63.

Зона значимости простирается вправо, от 1,63 и далее, а зона незначимости - влево, от 1,36 к меньшим значениям.

λэмпкр

Ответ: Н0 принимается. Эмпирические распределения желтого цвета по 8 позициям в отечественной выборке и выборке X. Клара совпадают. Таким образом, распределения желтого цвета в двух выбор-ках не различаются, но в то же время они по-разному соотносятся с равномерным распределением: у Клара отличий от равномерного рас­пределения не обнаружено, а в отечественной выборке различия обна­ружены (ρ<0,05). Возможно, картину могло бы прояснить применение другого метода?

Е.В. Гублер (1978) предложил сочетать использование критерия λ, с критерием φ* (угловое преобразование Фишера).

Об этих возможностях сочетания методов λ и φ* мы поговорим в следующей главе (см. пример 4 п.5.2).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...