Влияние стероидов на рецептор: активация и связывание ядром
Стероидные гормоны любого из основных классов, включающих эстрогены, прогестины, андрогены, глюкокортикоиды и минералокортикоиды, действуют в соответствии с общей схемой, т. е. связываются со специфическими цитоплазматическими белками, или рецепторами, после чего происходит активация комплекса и транслокация его в ядро. Здесь связывание комплекса ядерными акцепторными участками хроматина клеток-мишеней модулирует активность специфических генов, ответственных за синтез определенных видов мРНК (рис. 4—26). Как уже отмечалось, любые цитозольные комплексы стероида с рецептором подвергаются индуцируемой гормоном конверсии, называемой активацией рецептора, которая вызывает их накопление и связывание в ядре. Процесс активации рецептора индуцируется гормоном и зависит от температуры; он включает обычно изменение кажущейся молекулярной массы, заряда или конформации комплекса. Однако не существует постоянных изменений, которые характеризовали бы процесс активации применительно ко всем классам стероидных гормонов. Увеличение скорости седиментации с 4 до 5S обнаруживают только эстрогеновые рецепторы. Андрогенрецепторные и некоторые прогестеронрецепторные комплексы после активации снижают скорость седиментации, а глюкокортикоидные рецепторы не изменяют ее, но обнаруживают изменение заряда. Хотя процесс «активации» рецепторов стероидных гормонов необходим для ядерного связывания и действия, он варьирует для отдельных стероидных рецепторов, и общая его основа остается неясной. Агонисты и антагонисты стероидов Как и многие другие типы биологически активных лигандов, будь то лекарственные вещества, трансмиттеры или гормоны, стероидные гормоны и их производные можно разделить на агонисты, антагонисты и неактивные соединения. Активность агонистов пропорциональна сродству их связывания с рецепторами и эффективности активации биологической реакции гормонрецепторным комплексом. Антагонисты также обнаруживают высокое сродство к рецептору, но не связываются с ядром или не обладают способностью активировать ядерные процессы. Аллостерическая модель действия стероидных агонистов и антагонистов на конформацию и активность рецепторов приведена на рис. 4—27. Важно подчеркнуть, что различия между агонистами и антагонистами редко бывают абсолютными и что многие соединения действуют как частичные агонисты (или частичные антагонисты), связываясь с рецепторами и, даже при полном насыщении рецепторных участков, не вызывая максимальной реакции. «Чистые» агонисты могут быть «слабыми» или «сильными» в зависимости от их сродства к рецепторам, но они не действуют как антагонисты. Так, «слабые» агонисты могут вызывать ту же биологическую реакцию, что и «сильные», если присутствуют в концентрации, достаточно высокой, чтобы насытить ту же самую долю рецепторов. В отличие от этого, частичные агонисты не могут вызвать полную реакцию, даже насыщая большинство или все рецепторы, и затем могут оказывать антагонистическое влияние или блокировать эффекты добавляемых соединений-агонистов. Частичные агонисты можно рассматривать как вещества, занимающие определенное место в спектре активности между чистыми агонистами и чистыми антагонистами. Для большинства клинических и экспериментальных целей лучше пользоваться чистыми агонистами и антагонистами. Однако многие антагонисты обладают некоторой степенью активности агониста, что необходимо учитывать при их применении для лечения и при анализе рецепторного связывания. Следует отметить также, что если активность данных агонистов в различных тканях относительно постоянна, то частичные агонисты и антагонисты могут проявлять непостоянную агонистическую и антагонистическую активность в отдельных тканях-мишенях или в разных экспериментальных условиях [69].
Рис. 4—27. Аллостерическая модель взаимодействий стероидного лиганда с рецептором. Рецептор включает как стероидсвязывающий (ССУ),. так и функциональный участок (ФУ), необходимые для проявления биологической активности, и может существовать в неактивной или активной конфигурации (Mainwaring [70] в модификации).
Антагонисты эстрогенов Некоторые нестероидные аналоги эстрогенов, такие, как нафоксидин и тамоксифен, препятствуют проявлению вызываемых эстрогенами реакций: роста матки и гиперплазии клеток-мишеней. Такие вещества связываются с цитоплазматическими эстрогеновыми рецепторами и стимулируют транслокацию антагонистрецепторного комплекса в ядро. Здесь комплекс связывается с хроматином и задерживается на длительный период, вызывая начальную стимуляцию РНК-полимеразы и клеточной гипертрофии. Однако связывание антагонист-рецепторного комплекса не сменяется последующим восстановлением числа цитозольных рецепторов, будь то за счет повторных циклов или ресинтеза их, что наблюдается после транслокации рецепторов под действием эстрогеновых агонистов [91]. Антагонисты андрогенов Наиболее активным природным антиандрогеном является прогестерон, и некоторые из наиболее мощных антагонистов андрогенов представляют собой активные прогестиновые производные. Антиандрогены противодействуют эффектам тестостерона или дигидротестостерона, конкурируя за андрогенсвязывающие участки рецепторов, присутствующих в андрогензависимых тканях-мишенях. Такие соединения имеют потенциальную значимость в лечении гирсутизма и других маскулинизирующих синдромов, а также в лечении гиперплазии и рака предстательной железы. Высокоактивные прогестиновые антиандрогены, такие, как ципротерон-ацетат, взаимодействуют с андрогеновыми, равно как и с прогестероновыми, рецепторами. Однако не все прогестины являются антагонистами андрогенов, а хломадинон-ацетат обладает относительно низкой антиандрогенной активностью, несмотря на его близкое структурное сходство с ципротерон-ацетатом. Присутствие циклопропа-новой группы в кольце А ципротерон-ацетата является основным структурным отличием его от хломадинон-ацетата и может играть важную роль в определении антиандрогенной активности [92а]. Некоторые антиандрогены подавляют также гонадотропную секрецию с последующим снижением продукции тестостерона, равно как и блокадой действия андрогенов. Медроксипрогестерон угнетает и активность 5a-редуктазы, нарушая тем самым образование ДГТ. Важно отметить, что некоторые прогестиновые антиандрогены обладают и другими видами гормональной активности, например ципротерон-ацетат проявляет не только андрогенные, но и антиэстрогенные и антигонадотропные свойства. Кроме того, длительное лечение ципротероном для достижения антиандрогенного эффекта может приводить к подавлению функции надпочечников за счет торможения секреции АКТГ, вероятно, через центральные механизмы высвобождения кортикотропина. Спиронолактон также взаимодействует с эстрогеновыми и андрогеновыми рецепторами, равно как и с рецепторами альдостерона, и может оказывать эстрогенные и антиандрогенные влияния, в том числе-появление гинекомастии и потерю либидо. К нестероидным антагонистам андрогенов относится флутамид, который не обладает гормональной активностью, а по своим антиандрогенным свойствам сходен с ципротерон-ацетатом. Подобно прогестинам, флутамид в тканях-мишенях угнетает поглощение и задержку в ядрах андрогенов, конкурируя за связывание с их цитозольными рецепторами.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|