Клеточные рецепторы тиреоидных гормонов
Хотя показано присутствие связывающих Т3 белков в цитоплазме, но они обладают относительно низким сродством по сравнению с ядерными участками, которые считаются в настоящее время истинными рецепторами, ответственными за эффекты тиреоидных гормонов [112]. Так, в отличие от стероидных гормонов, тиреоидные гормоны, по-видимому, не нуждаются во взаимодействии с цитозольными рецепторами для последующей транслокации в ядро (рис. 4—29). Ядерные участки связывания Т3 обладают высоким сродством и низкой емкостью и ассоциированы с ядерными негистоновыми белками; их молекулярная масса после солюбилизации составляет примерно 50000 [111]. Они присутствуют во всех гормончувствительных тканях (печень, почки, сердце и гипофиз) и отсутствуют в тканях, не реагирующих на тиреоидные гормоны (семенники, селезенка), и, возможно, в тканях больных с семейной резистентностью к тиреоидным гормонам. Ядерное связывание многочисленных аналогов Т3 тесно коррелирует с их биологической активностью, а вслед за насыщением рецепторов происходит увеличение активности полимеразы и образования РНК. Ядерные эффекты тиреоидных гормонов Стимуляция ядерных процессов тиреоидными гормонами была впервые установлена Tata [114]; она включает повышенное образование высокомолекулярных яРНК и мРНК, как и в случае стероидных гормонов. У животных с гипотиреозом скорость образования как предшественника РНК, так и мРНК снижена на 40%, но она быстро восстанавливается до нормы после введения Т3. Помимо своих генерализованных эффектов на геном,Т3 оказывает также избирательное действие на мРНК, кодирующий a2-макроглобулпн в печени и СТГ в клетках гипофиза. Вероятно, стимулирующее действие Т3 на активность других белков, таких, как митохондриальный фермент a-глицерофосфатдегидрогеназа (a-ГФД) и цитоплазматический маликфермент, также опосредуется повышением синтеза специфических мРНК [ИЗ].
Общие особенности действия тиреоидных гормонов в разных тканях проявляются в разной степени как из-за видовой и тканевой специфичности эффектов, так и из-за индивидуальных различий в зависимости между насыщенностью рецепторов и биологическими реакциями. Так, влияния Т3 на a-ГФД и маликфермент заметно варьируют в разных тканях и у разных видов животных, причем каждая ткань, по-видимому, реагирует на Т3 индивидуально [113]. Другой особенностью действия Т3 является его участие в мультигормональной регуляции синтеза мРНК. Это наглядно проявляется на примере продукции a2-макроглобулиновой мРНК, на которую влияют кортизол, андрогены и СТГ, равно как и Т3. Кортизол и Т3 оказывают также синергичное действие на синтез мРНК гормона роста в клетках гипофиза [114]. Наконец, метаболические факторы также модифицируют влияния Т3 на экспрессию отдельных генов, что проявляется особенно отчетливо при голодании и после введения углеводов. Так, индукция маликфермента под влиянием Т3 зависит от приема углеводов и не происходит при голодании. Однако голодание не препятствует реакции a-ГФД на Т3, что опять-таки свидетельствует о значении местных клеточных факторов в проявлении эффектов тиреоидных гормонов [113]. Очевидно, что большинство модуляций эффектов тиреоидных гормонов в отдельных тканях и в разных физиологических условиях могло бы происходить на пострецепторном уровне, реализуясь путем изменения скорости синтеза и процессинга мРНК в ядре и их последующей трансляции в специфические белки в цитоплазме.
Глава 5. МЕТОДЫ ОПРЕДЕЛЕНИЯ ГОРМОНОВ Ю. Л. ВАЙТУКАЙТИС (J. L. VAITUKAITIS) ВВЕДЕНИЕ
За последние несколько лет в результате разработки более тонких, чувствительных и специфических методов определения гормонов клиническая эндокринология во многом превратилась из своего рода искусства в раздел прикладной биохимии, физиологии и фармакологии. Этот прогресс оказался возможным благодаря выделению и последующей биологической и биохимической характеристике различных высокоочищенных полипептидных гормонов, стероидов, витаминов, производных небольших полипептидов и аминокислот, которые относят к гормонам, а также получению меченных радиоактивными атомами гормонов с высокой удельной активностью. Многие эндокринные заболевания распознаются или по крайней мере предполагаются на основании присутствия слишком большого или слишком малого количества нормально секретируемого гормона. Возможность определения низкого уровня гормонов в биологических жидкостях оказала существенную помощь в упрощении диагностических исследований. Для количественного определения гормонов в тканях и жидких средах организма вначале применялись относительно грубые и громоздкие биологические методы. С разработкой более чувствительных радиоиммунологических и радиорецепторных методик появилась возможность использовать более быстрые и экономичные способы определения гормонов, которые по существу стали краеугольным камнем клинической эндокринологии. Несмотря на свои недостатки, классические биологические методы сохранили значение для полной характеристики гормона, особенно в условиях возможного расхождения его биологических и иммунологических свойств. К счастью, уровень гормонов, определяемый радиоиммунологическим и биологическим методами коррелируют друг с другом. В связи с этим концентрация гормонов, определяемая с помощью радиоиммунологического метода, обычно свидетельствует об уровне биологически активных гормонов в крови. Эта связь достаточно случайна, поскольку биологическая и иммунологическая активность, как правило, отражает разные свойства, и присуща она разным участкам молекулы гормона. Получение высокоочищенных гормональных препаратов не просто дало возможность разработать чувствительные методы измерения концентрации гормонов, но и снабдило исследователей неоценимым средством углубленного проникновения в механизмы их клеточного действия. С помощью этих средств выяснилось, что клинические расстройства могут обусловливаться нарушением не только секреции, но и действия гормонов в силу качественных или количественных изменений рецепторов отдельных гормонов, равно как и внутриклеточных биохимических механизмов опосредования гормонального эффекта. В настоящей главе описаны общие принципы надежности методов биологического, радиоиммунологического и радиорецепторного определения гормонов и общие требования, предъявляемые к этим методам. В большинстве случаев исследования весьма сложны, требуют тонкой аппаратуры и опыта экспериментатора. Кроме того, проведение таких исследований требует времени, причем разного при определении разных гормонов, так что получение «моментальных» результатов редко возможно. Ничто не может привести заведующего лабораторией в большее уныние, чем требование определить уровень паратгормона в сыворотке за 10 мин после отправки пробы в лабораторию. Время, необходимое для проведения анализа, варьирует от нескольких часов до нескольких дней в зависимости от метода определения и определяемого гормона.
БИОЛОГИЧЕСКИЕ МЕТОДЫ Результаты анализа гормонов, выполняемого в различных лабораториях, должны выражаться в общепринятых стандартных единицах. Результаты биологических исследований приводятся обычно в системе единиц международного стандарта, получаемого из ВОЗ. Эти результаты могут быть выражены и в единицах препарата сравнения, получаемого лабораториями из центров, обслуживающих более ограниченные географические области. В таком случае результаты анализа следует сопровождать указанием на способ пересчета единиц препаратов сравнения в единицы международных стандартов. Хотя полипептидные гормоны и являются высокоочищенными, но в соответствующих препаратах присутствуют небольшие, но влияющие на результаты анализа примеси; поэтому обычно избегают приводить результаты биологических и иных определений в единицах массы гормона. Количество большинства полипептидных гормонов, определяемое с помощью биологических или радиоиммунологических методов, оценивают в системе единиц, ранее установленных ВОЗ. С другой стороны, поскольку стероидные и тиреоидные гормоны существуют в химически чистом виде, результаты их определения обычно выражают в единицах массы. Поскольку в разных лабораториях используют несколько (хотя и существенно) различающиеся реактивы и методики, каждая лаборатория должна определять пределы нормальных колебаний концентрации гормонов в пробах, отбираемых в стандартных условиях и анализируемых с помощью тщательно охарактеризованных реактивов или моделей биологического исследования.
ИССЛЕДОВАНИЯ IN VIVO Биологические определения могут выполняться на моделях in vivo или in vitro путем оценки действия постепенно меняющихся доз препарата сравнения или стандарта и интерполяции физиологического эффекта, вызываемого гормоном, количеством которого в пробе неизвестно. Как правило, в качестве относительно специфичного показателя оценивают определенную реакцию, на действие гормона. Например, сравнивают реакцию массы органа-мишени на действие различных доз неизвестного и стандартного гормонального препарата. Для того чтобы результаты определения имели силу, кривые доза—реакция для препарата сравнения и неизвестной пробы должны быть параллельными. Демонстративным примером служит биологическое определение активности ЛГ и ХГЧ in vivo по влиянию на массу вентральной части предстательной железы. Лютеинизирующий гормон (гормон гипофиза) и ХГЧ (плацентарный гормон) обладают неотличимой биологической активностью. При этом исследовании постепенно увеличивающиеся количества экстракта мочи вводят подкожно в дробных дозах гипофизэктомированным неполовозрелым самцам крыс на протяжении нескольких дней и в конце этого периода определяют массу вентральной части предстательной железы. Точно так же вводят постепенно увеличивающиеся дозы препарата сравнения, обладающего известной удельной биологической активностью ЛГ или ХГЧ, и массу вентральной части предстательной железы сравнивают с таковой у животных, получавших неизвестный препарат. Этот биологический метод адекватен для определения биологической активности как ЛГ, так и ХГЧ, поскольку оба гормона стимулируют синтез и секрецию тестостерона клетками Лейдига крысы, что в свою очередь через ряд биохимических этапов приводит к увеличению размеров вентральной части предстательной железы животного. Увеличение массы этого органа пропорционально количеству тестостерона, выделяемого семенниками, стимулированными ЛГ и ХГЧ. Гипофизэктомированных животных используют для того, чтобы исключить синтез и секрецию тестостерона в ответ на эндогенный Л Г. Этот метод является одним из классических и все еще применяется для характеристики препаратов ЛГ и ХГЧ. Он был впервые предложен более 40 лет назад Greep и соавт., а впоследствии модифицированы [1, 2].
Поскольку наклоны кривой доза-реакция от одного биологического определения к другому могут значительно варьировать даже при использовании одного и того же препарата, то каждый раз при определении необходимо производить статистический анализ на параллелизм между наклонами и однородностью отклонений кривых доза—реакция для стандарта или препарата сравнения и неизвестного препарата. В идеальном случае следует определить эффект не менее, чем в 3 достаточно отдаленных друг от друга точках кривой доза—реакция с использованием проб от 3—5 животных на каждую точку для стандартного и неизвестного препарата. Только при параллелизме и гомогенности отклонений между стандартом и испытуемым препаратом можно сделать достоверный вывод о биологической активности и ее доверительных границах применительно к испытуемому препарату. При отсутствии такого параллелизма об активности испытуемого препарата судить нельзя. Легко убедиться, что при биологических исследованиях любого типа не должно определяться действие в одной точке. За многие годы предложено огромное число методов биологического тестирования in vivo. Некоторые из них достаточно грубы, нечувствительны и неспецифичны, например инсулиновые судороги у мышей. Другие биологические методы значительно более специфичны и чувствительны и продолжают применяться для характеристики очищенных гормональных препаратов. ИССЛЕДОВАНИЯ IN VITRO Большинство методов in vivo требует относительно больших объемов плазмы, мочи или тканевых экстрактов, содержащих достаточное количество гормона, чтобы вызвать значимый биологический эффект. В связи с этим подобные исследования, хотя они очень важны для исходной характеристики различных гормональных препаратов, оказываются непригодными для рутинного клинического применения. За последние несколько лет разработаны различные методы биологического исследования in vitro. Они не только специфичны, но и требуют значительно меньших объемов тканевых экстрактов или биологических жидкостей, что отражает их большую чувствительность. К сожалению, такие методы требуют уровня квалификации, пока еще не доступного для большинства лабораторий, осуществляющих рутинные клинические анализы. Как правило, критерием сравнения служат различные дозы известного гормонального препарата, по отношению к которым можно интерполировать реакцию, вызываемую неизвестной пробой. Различные дозы или объемы неизвестной пробы исследуют в той же самой системе наблюдения, а варианты реакции как на неизвестный препарат, так и на препарат сравнения или стандарт анализируют на параллелизм и гомогенность отклонений. Последнее требование обязательно для любых определений гормонов как in vivo, так и in vitro. Примером биологической системы in vitro служат клетки Лейдига, или интерстициальные клетки. Под влиянием стимуляции ЛГ пли ХГЧ клетки Лейдига синтезируют и секретируют тестостерон в количестве, зависимом от дозы стимулирующего гормона. С помощью известных методик [3] клетки Лейдига можно отделить от семенных канальцев. Эти клетки равномерно распределяют по пластинкам для клеточных культур и стимулируют различными концентрациями стандартных препаратов ЛГ и ХГЧ и различными объемами неизвестной пробы. Тестостерон секретируется в культуральную среду, и его концентрация определяется специфическим радиоиммунологическим методом. При биологических исследованиях in vitro могут использоваться различные показатели; к ним относятся изменения концентрации стероидов, ферментов или циклических нуклеотидов. Вообще говоря, определения in vitro более чувствительны, чем соответствующие им определения in vivo, и требуют значительно меньших объемов экстрактов сыворотки, ткани или мочи. Однако при интерпретации результатов биологического исследования in vitro необходима особая осторожность, поскольку в такой системе гормон может быть биологически активным, a in vivo оказывать очень слабое действие. Это расхождение отражает тот факт, что гормон должен не только связываться со специфическим участком клеточной поверхности и «запускать» определенную последовательность биохимических сдвигов, но и быть доставленным к соответствующим клеточным рецепторам в высокой концентрации, чтобы насытить достаточное для воспроизведения эффекта число рецепторов. В некоторых случаях в силу будто бы небольших модификаций структуры гормона его клиренс может изменяться в значительной степени. Для того чтобы гормон вступил во взаимодействие с рецептором, он должен быть биологически активным, т. е. иметь соответствующую конформацию для связывания специфическим рецептором с высоким сродством или прочностью связи. Однако гормон может быть биологически активным in vitro, но не обладать значительной биологической активностью in vivo в силу измененного из-за своих структурных особенностей метаболического клиренса. При исследовании биологической активности десиалилированного ХГЧ in vivo и in vitro обнаруживаются существенные расхождения ее [4—7]. После лишения молекулы ХГЧ сиаловой кислоты (десиалилация) in vitro гормон оказывает такой же, если не больший, биологический эффект, что и его нативная, полностью сиалилированная молекула [6, 7]. С другой стороны, in vivo он проявляет очень небольшую биологическую активность, отражающую степень десиалилации его молекулы. Это расхождение определяется значительно более коротким периодом полужизни десиалилированного ХГЧ в плазме по сравнению с интактным гормоном [5]. В связи с этим десиалилированный ХГЧ in vivo достигает своих клеток-мишеней в концентрации, недостаточной для воспроизведения значительного биологического эффекта. Методы определения одного и того же гормона в системах in vitro обычно более чувствительны, чем в системах in vivo. Некоторые методы биологического исследования in vitro обладают даже большей чувствительностью, чем радиоиммунологические методы определения концентрации гормона. Методы биологического исследования in vitro, в которых в качестве показателя эффекта используются не специфическое рецепторное связывание или активация аденилатциклазы, а другие биохимические процессы, обычно в десятки, а то и сотни раз более чувствительны, чем радиоиммунологические методы. Методы биологического определения гормонов in vitro в настоящее время не входят в число рутинных способов оценки состояния больного, за исключением тех редких случаев, когда можно предположить расхождение биологической и иммунологической активности гормона.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|