Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

А) Характеристика короткого замыкания.




Характеристика короткого замыкания I к = f (I в) при U = 0 = const представлена на рис. 4-34.

Рис. 4-34. Характеристика короткого замыкания и ее построение.

Здесь имеется в виду установившийся ток короткого замыкания I к, т. е. ток, значение которого длительно держится постоянным.

При снятии этой характеристики опытным путем используются схемы, приведенные на рис. 4-35, а и б.

Рис. 4-35. Схемы для опытов короткого замыкания.

Для схемы на рис. 4-35, а необходимо иметь три одинаковых амперметра. Обычно опыт проводится при схеме на рис. 4-35, б. Некоторая несимметричность отдельных цепей в данном случае допустима, так как сопротивление амперметра значительно меньше сопротивления отдельных фаз обмотки.

Характеристика короткого замыкания, как увидим из построения ее расчетным путем, должна идти в виде прямой линии.

Обратимся к векторным диаграммам короткозамкнутого генератора

На рис 4-36, а представлена диаграмма явнополюсного генератора, на которой:

; ; ; ;

; ; .

Рис. 4-36. Диаграммы короткозамкнутого генератора.
а
— явнополюсного; б —неявнополюсного

 

Так как в обычных, случаях , то можем написать: . Следовательно, по характеристикам холостого хода и короткого замыкания (рис. 4-34) можно определить хd:

. (4-31)

То же самое получаем для неявнополюсного генератора (рис. 4-36, б и 4-34).

Приведенное соотношение дает значение xd для ненасыщенной машины, если э.д.с. берется по прямолинейной части характеристики холостого хода или по ее продолжению. Если характеристики построены в относительных единицах, то, очевидно, и сопротивление xd получится в относительных единицах.

При помощи характеристики холостого хода и короткого замыкания можно также определить продольную н.с. реакции якоря Fad, если известна величина х σ. Для этого нужно на характеристике холостого хода отложить , тогда даст результирующую н.с. по продольной оси, а — продольную н.с. реакции якоря, равную Fad = kdFa (рис. 4-34).

При этих построениях мы пренебрегаем активным падением напряжения. В противном случае надо было бы взять равным Iz σ, где . Но обычно х σ во много раз больше rа, поэтому можно вместо z σ брать х σ.

На рис. 4-35, б представлена диаграмма неявнополюсного короткозамкнутого генератора. Сопоставляя ее с рис. 4-34, можно установить, что для неявнополюсных машин отрезок практически равен н.с. реакции якоря (приведенной к н.с. обмотки возбуждения).

Теперь рассмотрим, как производится построение характеристики короткого замыкания по расчетным данным.

Отложим на характеристике холостого хода (рис. 4-34) отрезок (или точнее, равный I к z σ), затем от точки D на оси абсцисс отложим отрезок , равный для явнополюсной машины Fad = kdFa, а для неявнополюсной машины равный . Тогда точка B 1 дает точку характеристики короткого замыкания для тока /к, для которого определялись падение напряжения Iкx σ и н.с. Fad или . Пока точка С лежит на прямолинейной части характеристики холостого хода, отрезки пропорциональные току I к, будут изменяться пропорционально токам возбуждения и т. д., и, следовательно, характеристика короткого замыкания изобразится прямой линией. Поэтому для ее построения достаточно найти одну точку, например В 1, и провести прямую через точку 0 и найденную точку В 1.

Для очень больших значений тока якоря, при которых точка С попадает за колено характеристики холостого хода, характеристика короткого замыкания будет загибаться в сторону оси абсцисс. Однако с такими значениями установившегося тока короткого замыкания на практике иметь дело не приходится.

Прямоугольный треугольник DC 1 A 1 на рис. 4-34, у которого один катет равен Ix σ, а другой — н.с. реакции якоря Fad (или ), называется реактивным треугольником (также треугольником Потье). Стороны его могут быть определены опытным путем, как показано в следующем пункте.

б) Индукционная нагрузочная характеристика.

Из нагрузочных характеристик, представляющих собой зависимости U = f (I в) при I = const и cos φ = const, практическое значение имеет лишь нагрузочная характеристика при cosφ = 0. Будем ее называть индукционной нагрузочной характеристикой. Она может быть снята при использовании в качестве нагрузки другой синхронной машины, включенной на параллельную работу с испытуемой (см. § 4-7).

Если характеристика снимается опытным путем при нагрузке генератора на реактивную катушку, то cos φ, очевидно, нельзя установить равным нулю. Однако опыт показывает, что при снятии рассматриваемой характеристики достаточно установить cos φ 0,2. Поэтому при испытании генераторов небольшой мощности в качестве нагрузки иногда используются реактивные катушки с переменной индуктивностью, имеющие относительно небольшие потери.

На рис. 4-37, а представлена индукционная нагрузочная характеристика.

Рис. 4-37. Индукционная нагрузочная характеристика и определение сторон реактивного треугольника.

Ее точка А в соответствии с тем током, для которого она снималась, может быть взята из характеристики короткого замыкания (рис. 4-34). На рис. 4-37, а, кроме индукционной нагрузочной, изображена также характеристика холостого хода Е 0. При помощи этих двух характеристик можно определить, как будет показано, сопротивление х σ и н.с. реакции якоря Fad (в случае явнополюсной машины) или (в случае неявнополюсной машины).

Покажем вначале, как может быть построена индукционная нагрузочная характеристика, если известны характеристика холостого хода и катеты реактивного треугольника, т. е. σ и Fad или . Для этого нужно построить реактивный треугольник DСА в нижней части характеристики холостого хода (рис. 4-37, а) и передвигать его параллельно самому себе так, чтобы вершина С скользила по характеристике холостого хода; тогда вершина А опишет искомую характеристику. Для того чтобы убедиться, что точки полученной таким образом характеристики, действительно дают напряжения генератора при его работе с соsφ=0, рассмотрим построенные для этого случая диаграммы явнополюсной и неявнополюсной машин (рис. 4-37, б и в). Для диаграммы явнополюсной машины, если пренебречь активным сопротивлением обмотки статора, получим:

; ; ; ;

; ; ;

(I d = I, так как ; здесь xad, а следовательно, и xd — значения сопротивлений по продольной оси при условном учете насыщения), для диаграммы неявнополюсной машины

; ; ; ;

; .

 

Теперь покажем, как по характеристикам холостого хода и индукционной нагрузочной, снятым опытным путем, определяются Ix σ и Fad или .

Из предыдущего следует, что если треугольник 0СА передвигать параллельно самому себе так, чтобы вершина А скользила по нагрузочной характеристике, то вершина С будет скользить по характеристике холостого хода. В верхней части характеристик этот треугольник займет положение 01 С 1 A 1 (рис. 4-37, а). Отсюда вытекает метод определения его сторон, т. е. сторон реактивного треугольника. Согласно этому методу проведем через точку A 1 линию, параллельную оси абсцисс. На этой линии отложим отрезок , равный отрезку . Если теперь провести через точку 0 1 линию, параллельную начальной части характеристики холостого хода, то получим точку C 1. Опустив из точки С 1 перпендикуляр на линию 0 1 A 1, найдем искомый реактивный треугольник D 1 C 1 A 1.

Приведенный метод определения сторон реактивного треугольника несколько неточен. В действительности нагрузочная характеристика, снятая опытным путем (пунктирная кривая на рис. 4-37, а), при больших насыщениях полюсов и ярма ротора пойдет несколько ниже, чем нагрузочная характеристика, построенная при помощи реактивного треугольника (сплошная кривая на рис. 4-37, а). Расхождение кривых объясняется тем, что при больших насыщениях полюсов и ярма ротора поток рассеяния обмотки возбуждения заметным образом повышает их магнитные напряжения, ничтожно малые при слабых насыщениях (например, при коротком замыкании). При нагрузке поток полюсов и ярма ротора слагается из потока, соответствующего э.д.с. E δ d (или E δ), и потока рассеяния обмотки возбуждения, созданного н.с. F в, а не н.с. F δ d (или F δ), как это принимается при расчете характеристики холостого хода. Расхождение опытной и расчетной характеристик обычно невелико для нормальных машин; все же сопротивление, найденное по указанному методу, несколько отличается от сопротивления рассеяния х σ, поэтому его иногда называют индуктивным сопротивлением Потье и обозначают через хp.

Для неявнополюсных машин хp получается обычно близким к х σ. Для явнополюсных машин хp (1,1 1,3 хσ, если определение хp производится при напряжении (рис 4-37, а). Вообще же хp заметным образом зависит от выбора точки А 1 на нагрузочной характеристике.

Можно также приближенно найти стороны реактивного треугольника, если перенести (при помощи прозрачной бумаги) нагрузочную характеристику так, чтобы возможно большая нижняя часть ее совпала с характеристикой холостого хода. Тогда точка А должна попасть в точку С.

в) Регулировочные характеристики.

Регулировочные характеристики I в = f (I) при U = const и cosφ = const представлены на рис. 4-38.

.

Рис. 4-38. Регулировочные характеристики.

Они показывают, как нужно изменять возбуждение, чтобы при изменении тока нагрузки и сохранении соs φ = const напряжение на зажимах генератора оставалось постоянным.

Регулировочные характеристики могут быть сняты опытным путем или найдены при помощи векторных диаграмм, если известны характеристика холостого хода и параметры: x σ, xd («ненасыщенное» значение), xq. В последнем случае приходится строить ряд диаграмм для различных значений тока I при одних и тех же заданных напряжении U и cos φ.

Покажем на конкретных примерах, как производится построение диаграмм неявнополюсного и явнополюсного генераторов для определения тока возбуждения при заданной нагрузке: U, I, cos φ. Для примеров возьмем турбогенератор (т) и гидрогенератор (г) и будем пользоваться при построении диаграмм «нормальными» характеристиками холостого хода в относительных единицах (рис. 4-39):

;

здесь

, ,

где I в.0 — ток возбуждения, соответствующий номинальному напряжению при холостом ходе. Эти характеристики построены на рис. 4-39 по данным табл. 4-2.

Рис. 4-39. Характеристики холостого хода турбогенераторов (т) и гидрогенератора (г) (к построению векторных диаграмм на рис. 4-40 и 4-41).

 

Характеристики холостого хода современных турбогенераторов и гидрогенераторов в относительных единицах мало отличаются от нормальных характеристик, построенных по табл. 4-2, где приведены усредненные значения по данным испытания многих машин. При приближенных расчетах ими можно пользоваться, если нет данных действительных характеристик холостого хода.

Таблица 4-2

Нормальные характеристики холостого хода (по данным заводов Советского Союза)

  0,50 1,0 1,50 2,0 2,5 3,0 3,5 Примечание
  0,58 1,0 1,21 1,33 1,4 1,46 1,51 Для турбо- генераторов
  0,53 1,0 1,23 1,30 Для гидро- генераторов

Векторные диаграммы будем строить также для величин в относительных единицах:

Они представлены на рис 4-40 и 4-41, где U *=1, I *=1 и cosj=0,8.

Рис. 4-40. Диаграмма турбогенератора:
25000 кВт (31250 кВА); 6300 В; 2870 А; cosjн = 0,8; 3000 об /мин; = 0,00225; = 0,11; = 1,86 (» xq); = 1,75 (из характеристики холостого хода для = 2,36; = 1,39).

Рис. 4-41. Диаграмма гидрогенератора:
30000 кВ А; 13 800 В; 1 260 А; cos φн =0,8; 75 об/мин; = 0,005; = 0,11; = 0,81: = 0,70; = 0,49; = 0,38 (из характеристики холостого хода для = 1,67, = l,25).

На рис. 4-39 показано, как по данным значениям для турбогенератора и для гидрогенератора определяются соответствующие н.с. и . Здесь – продольная н.с. якоря при .

Продольная н.с. реакции якоря при значении угла j, найденном по диаграмме рис. 4-41, есть:

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...