Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Условия хорошцй регенерации скелетной мышечной ткани




Полноценная регенерация поперечнополосатой мышечной ткани чаще происходит при небольших повреждениях. В последнее время бла­годаря методам микрохирургии, позволяющим восстановить сосуды и не­рвы, удается добиться удовлетворительной регенерации мышц и при массивных повреждениях, что позволяет реплантировать ампутированные при травмах конечности. Условиями хорошей регенерации мышечной ткани являются:

1. Максимальное сближение краев поврежденного мышечного волокна путем их сшивания.

2. Тщательное удаление из зоны регенерации мертвых тканей и пре­пятствие развитию грубой рубцовой соединительной ткани.

3. Тщательное восстановление непрерывности кровеносных сосудов и нервов. Достигается путем их сшивания под операционным микроскопом.

4. Сохранение целостности базальной мембраны мышечных волокон также является важным условием хорошей регенерации мышечных воло­кон. Она препятствует проникновению в поврежденное мышечное волокно фибробластов и разрастанию соединительной ткани. Сохраненная базаль-ная мембрана способствует ориентации мышечных трубочек, обеспечивает нормальное микроокружение.

РОСТ И КОМПЕНСАТОРНО-ПРИСПОСОБИТЕЛЬНАЯ ПЕРЕ­СТРОЙКА СКЕЛЕТНОЙ МЫШЕЧНОЙ ТКАНИ. В онтогенезе происхо­дят существенные изменения со стороны мышечной ткани, связанные с ее ростом и адаптацией к изменяющимся условиям функционирования.

Рост мышечной ткани и скелетных мышц происходит за счет двух процессов: 1) утолщения и 2) удлинения миофибрилл и всего мышечного волокна. Утолщение мышечного волокна осуществляется как за счет обра­зования новых миофибрилл, так и за счет их утолщения путем добавле­ния вновь синтезированных миофиламентов к прсдсуществующим мио-фибриллам (гипертрофия миофибрилл). Возможно также увеличение ко­личества миофибрилл путем расщепления предварительно утолщенных предсуществующих миофибрилл, а затем их гипертрофии. Параллельно в волокне идет увеличение содержания саркоплазмы и органелл в ней.

Удлинение миофибрилл и мышечного волокна в целом происходит дву­мя путями: 1) путем пристройки к концам миофибрилл новых сар-комеров и 2) в результате слияния с мышечным волокном все но­вых и новых миосателлитоцитов. В основе удлинения мышечного во­локна лежит также образование все новых компонентов саркоплазмы.

Гипертрофия скелетной мышечной ткани и скелетных мышц — это своеобразная адаптация мышечной ткани, которая происходит при дли­тельном возрастании мышечной нагрузки и характеризуется преобладани­ем анаболических процессов над катаболическими. В основе гипертрофии лежит увеличение числа и размеров (диаметра) миофибрилл, а также компонентов саркоплазмы. При тренировках на физическую выносливость происходит преимущественное увеличение объема саркоплазмы и в осо­бенности митохондрий, а при скоростно-силовых тренировках преимуще­ственное развитие получает миофибриллярный аппарат.

Атрофия скелетной мышечной ткани и мышц наблюдается при гипо­динамии, денервации и голодании. В некоторых случаях (голодание, гипо­динамия) атрофия является своеобразной адаптацией к экстремальным ус­ловиям существования. Врожденная атрофия (или правильнее, дистро­фия) скелетной мышечной ткани наблюдается при генетических наруше­ниях. Характеризуется генетическим дефектом синтеза белков дистрофи-нов, сопровождающимся снижением их содержания. Эти белки связывают миофибриллы с сарколеммой и межклеточным веществом эндомизия. Та­кая связь обеспечивает нормальную биологию мышечных волокон. Сниже­ние содержания дистрофинов проявляется разрушением мышечных воло­кон и замещением их жировой и волокнистой соединительной тканями.

Стимуляция регенерации и гипертрофии скелетной мышечной ткани. Ускорения и полноценной регенерации скелетной мышечной ткани можно добиться следующими способами: 1) путем назначения анаболических гор­монов (мужских половых гормонов или их синтетических аналогов, инсу­лина, гормона роста); 2) путем назначения витаминов. Особое значение имеют витамины, непосредственно участвующие в синтезе белков: витамин В,2, фолиевая кислота, оротовая кислота (калия оротат). 3) В эксперименте показано резкое улучшение регенерации скелетной мышцы при введении в зону повреждения измельченной мышцы ("мышечного фарша"). 4) В пос­леднее время для стимуляции регенерации поврежденной скелетной мыш­цы стали применять имплантацию культуры миосателлитоцитов. Их уда­ется выделить из мышечной ткани и выращивать культурально. 5) Боль­шое значение имеют досточно ранние дозированные функциональные на­грузки на регенерирующую мышечную ткань.

СТРОЕНИЕ СКЕЛЕТНОЙ МЫШЦЫ КАК ОРГАНА. Мышца состо­ит из множества мышечных волокон, связанных в единое целое соедини­тельной тканью. Количество мышечных волокон в мышцах может сильно варьировать — от нескольких сот тысяч до нескольких миллионов. Между мышечными волокнами лежит РВНСТ, называемая эндомизием. Соеди-нптельпоткапные волокна зндо-мнзия тесно связаны с баналь­ной мембраной мышечного во­локна. Несколько мышечных волокон (10—100) окружены более толстыми прослойками РВНСТ — перимизием. Пери-мизий образован сильно развет­влен н ы м и прослой ка ми РВНСТ, отходящими от эпи-мизия. В эндомизии и перими-зии находятся сосуды и нервы, питающие мышцу (рис. 12.13). Снаружи мышца покрыта эпи-мизием — тонким прочным футляром из плотной волокнистой соединительной ткани. С концов к мыш­це прикрепляются сухожилия. При этом сарколемма на концах мышечных волокон образует многочисленные интердигитацпи, в которые заходят и тес­но вплетаются в базальную мембрану коллагеновые волокна сухожилия.

ТИПЫ МЫШЕЧНЫХ ВОЛОКОН. Выделяют три основных типа мышечных волокон (рис. 12.14).

I типкрасные мышечные волокна. Имеют небольшой диаметр. В них преобладает саркоплазма, в которой много белка миоглобина, обеспе­чивающего красный цвет волокон. Миофибрилл меньше, чем саркоплазмы, они относительно тонкие. Это медленные (тонические) мышечные во­локна. Они содержат много митохондрий, имеют высокую активность окислительно-восстановительных ферментов, запасы питательных веществ (включения липидов) и могут сокращаться в течение длительного времени, но медленно, развивая не очень большую силу сокращений. Красные мы­шечные волокна содержат много миосателлитоцитов и усиленно кровоснаб-жаются. Из них построены мышцы, выполняющие длительные тонические нагрузки, например, у птиц, совершающих длительные перелеты, это груд­ные мышцы.

НВ типбелые мышечные волокна. Характеризуются большим диамет­ром, сильным развитием миофибрилл и меньшим развитием саркоплазмы, в которой содержится меньше, чем в красных волокнах, питательных запа­сов и митохондрий. В волокнах низкая активность окислительных фер­ментов, а активность гликолитических ферментов (лактатдегидрогеназы и др.) — напротив, высокая. Содержат большие запасы гликогена. Это быст­рые, тетанические, способные вызывать сокращения большой силы, но бы­стро утомляемые мышечные волокна. Их кровоснабжение относительно слабое. Из этих мышечных волокон построены мышцы, выполняющие бы­стрые движения и сильные сокращения (мышцы конечностей). Белые мы­шечные волокна более быстро и выраженно подвергаются гипертрофии, чем красные мышечные волокна.


НА тип. Промежуточный тип мышечных волокон, занимающий и в структурном, и в функциональном отношении среднее положение между первыми двумя. В качестве источника энергии используют как липиды, так и гликоген, в них в одинаковой степени протекают и окислительные, и гликолитические процессы. Способны сокращаться быстро, с большой силой, и вместе с тем устойчивы к утомлению.

У каждого человека свое индивидуальное, генетически обусловленное соотношение трех типов мышечных волокон, этим определяются разные физические и спортивные качества и способности.


СЕРДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ

РАЗВИТИЕ. Источником развития сердечной мьшючной ткани явля­ется миоэпикардиальная пластинка — часть висцерального сплаихпотома в шейном отделе зародыша. Ее клетки превращаются в миобласты, которые активно делятся митозом и дифференцируются. В цитоплазме миобластов синтезируются миофиламенты, формирующие миофибриллы. Вначале миофибриллы не имеют исчерченности и определенной ориентации в цитоплазме. В процессе дальнейшей дифференцировки принимают про­дольную ориентацию и тонкими миофиламентами прикрепляются к форми­рующимся уплотнениям сарколеммы (Z-вещество).

В результате все возрастающей упорядоченности миофиламентов мио­фибриллы приобретают поперечную исчерчениость. Образуются кардиоми- оциты. В их цитоплазме нарастает содержание органелл: митохондрий, гра нулярной ЭПС, свободных рибосом. В процессе дифференцировки кардио миоциты не сразу теряют способность к делению и продолжают размно­жаться. В некоторых клетках может отсутствовать цитотомия, что ведет к появлению двуядерных кардиомиоцитов. Развивающиеся кардиомиоциты имеют строго определенную пространственную ориентацию, выстраиваясь в виде цепочек и образуя друг с другом межклеточные контакты — вставоч­ные диски. В результате дивергентной дифференцировки кардиомиоциты превращаются в клетки трех типов: 1) рабочие, или типичные, сократи­тельные; 2) проводящие, или атипичные; 3) секреторные (эндокрин­ные). В результате терминальной дифференцировки кардиомиоциты к мо­менту рождения или в первые месяцы постнаталыюго онтогенеза теряют способность к делению. В зрелой сердечной мышечной ткани камбиальные клетки отсутствуют.

СТРОЕНИЕ. Сердечная мышечная ткань образована клетками карди-омиоцитами. Кардиомиоциты являются единственным тканевым элемен­том сердечной мышечной ткани. Они соединяются друг с другом при по­мощи вставочных дисков и образуют функциональные мышечные волокна, или функциональный симпласт, не являющийся симпластом в морфологи­ческом понятии. Функциональные волокна разветвляются и анастомози-руют боковыми поверхностями, в результате чего образуется сложная трехмерная сеть (рис. 12.15).

Кардиомиоциты имеют вытянутую прямоугольную слабоотростчатую форму. Они состоят из ядра и цитоплазмы. Многие клетки (более полови­ны у взрослого индивидуума) являются двуядерными и полиплоидными. Степень полиплоидизации различна и отражает адаптивные возможности миокарда. Ядра крупные, светлые, находятся в центре кардиомиоцитов.

Цитоплазма (саркоплазма) кардиомиоцитов обладает выраженной ок-сифилией. В ней содержится большое количество органелл и включений. Периферическую часть саркоплазмы занимают расположенные продольно исчерченные миофибриллы, построенные так же, как в скелетной мышеч­ной ткани (рис. 12.16). В отличие от миофибрилл скелетной мышечной ткани, лежащих строго изолированно, в кардиомиоцитах миофибриллы нередко сливаются друг с другом с образованием единой структуры и со­держат сократимые белки, химически отличающиеся от сократимых бел­ков миофибрилл скелетных мышц.

СИР и Т-трубочки развиты слабее, чем в скелетной мышечной ткани, что связано с автоматией сердечной мышцы и меньшим влиянием не­рвной системы. В отличие от скелетной мышечной ткани СПР и Т-трубочки образуют не триады, а диады (к Т-трубочке прилежит одна цистерна СПР). Типичные терминальные цистерны отсутствуют. СПР менее интенсивно ак­кумулирует кальций. Снаружи кардиоциты покрыты сарколеммой, состоящей из плаз-молеммы кардиомпоцита и базаль-ной мембраны снаружи. Вазальная мембрана тесно связана с межкле­точным веществом, в нес вплетают­ся коллагеновые и эластические во­локна. Базальная мембрана отсут­ствует в местах вставочных дисков. Со вставочными дисками свя­заны компоненты цитоскелета. Че­рез интегрины цитолеммы они также связаны с межклеточным ве­ществом. Вставочные диски — это место контактов двух кардио­миоцитов, комплексы межклеточ­ных контактов. Они обеспечивают как механическую, так и химичес­кую, функциональную коммуни­кацию кардиомиоцитов. В свето­вом микроскопе имеют вид тем­ных поперечных полосок (рис. 12.14 б). В электронном микроско­пе вставочные диски имеют зигза­гообразный, ступеньчатый вид или вид зубчатой линии. В них можно выделить горизонтальные и верти­кальные участки и три зоны (рис. 12.1,12.15 6).


 

1. Зоны десмосом и поло­сок слипания. Находятся на вер­тикальных (поперечных) участках дисков. Обеспечивают механичес­кое соединение кардиомиоцитов.

2. Зоны нексусов (щеле­вых контактов) — места переда­чи возбуждения с одной клетки на другую, обеспечивают химическую коммуникацию кардиомиоцитов. Обнаруживаются на продольных участках вставочных дисков. 3. Зоны прикрепления миофибрилл. Находятся на поперечных участках вставоч­ных дисков. Служат местами прикрепления актиновых фила-ментов к сарколемме кардиоми-оцита. Это прикрепление про­исходит к Z-полоскам, обнару­живаемым на внутренней по­верхности сарколеммы и анало­гичным Z-линиям. В области вставочных дисков обнаружива­ются в большом количестве кадгерины (адгезивные моле­кулы, осуществляющие каль-цийзависимую адгезию кардио-миоцитов друг с другом).

Типы кардиомиоцитов. Кардиомиоциты имеют разные свойства в разных участках серд­ца. Так, в предсердиях они мо­гут делиться митозом, а в желу­дочках никогда не делятся. Раз­личают три тина кардиомиоци­тов, существенно отличающихся друг от друга гак строением, так и функциями: рабочие, сек­реторные, проводящие.

1. Рабочие кардиомио­циты имеют структуру, описан­ную выше.

2. Среди предсердных миоцитов есть секреторные кардиомиоциты, которые вырабатывают натрийуретический фактор (НУФ), усиливаю­щий секрецию натрия почками. Кроме этого, НУФ расслабляет гладкие ми-оциты стенки артерий и подавляет секрецию гормонов, вызывающих гипер-тензию (альдостерона и вазопрессина). Все это ведет к увеличению диуре­за и просвета артерий, снижению объема циркулирующей жидкости и в результате — к снижению артериального давления. Секреторные кардио­миоциты локализуются в основном в правом предсердии. Следует отметить, что в эмбриогенезе способностью к синтезу обладают все кардиомиоциты, но в процессе дифференцировки кардиомиоциты желудочков обратимо те-ряют эту способность, которая может восстанавливаться здесь при перенап­ряжении сердечной мышцы.


3. Значительно отличаются от рабочих кардиомиоцитов проводящие (атипичные) кардиомиоциты. Образуют проводящую систему сердца (см. "сердечно-сосудистую систему"). Они в два раза больше рабочих кардио­миоцитов. В этих клетках содержится мало миофибрилл, увеличен объем саркоплазмы, в которой выявляется значительное количество гликогена. Благодаря содержанию последнего цитоплазма атипичных кардиомиоци­тов плохо воспринимает окраску. В клетках содержится много лизосом и отсутствуют Т-трубочки. Функцией атипичных кардиомиоцитов является генерация электрических импульсов и передача их на рабочие клетки. Не­смотря на автоматизм, работа сердечной мышечной ткани строго регули­руется вегетативной нервной системой. Симпатическая нервная система учащает и усиливает, парасимпатическая — урежает и ослабляет сердеч­ные сокращения.

РЕГЕНЕРАЦИЯ СЕРДЕЧНОЙ МЫШЕЧНОЙ ТКАНИ. Физиологи­ческая регенерация. Реализуется на внутриклеточном уровне и протекает с высокой интенсивностью и скоростью, поскольку сердечная мышца несет огромную нагрузку. Еще более она возрастает при тяжелой физической работе и в патологических условиях (гипертоническая болезнь и др.). При этом происходит постоянное изнашивание компонентов цитоплазмы кар­диомиоцитов и замещение их вновь образованными. При повышенной на­грузке на сердце происходит гипертрофия (увеличение размеров) и гиперп­лазия (увеличение количества) органелл, в том числе и миофибрилл с на­растанием в последних количества саркомеров. В молодом возрасте отме­чаются также полиплоидизация кардиомиоцитов и появление двуядерных клеток. Рабочая гипертрофия миокарда характеризуется адекватным адап­тивным разрастанием его сосудистого русла. При патологиии (например, пороки сердца, также вызывающие гипертрофию кардиомиоцитов) этого не происходит, и через некоторое время из-за нарушения питания происхо­дит гибель части кардиомиоцитов с замещением их рубцовой тканью (кардиосклероз).

Репаративная регенерация. Происходит при ранениях сердечной мышцы, инфарктах миокарда и при других ситуациях. Поскольку в сердеч­ной мышечной ткани пет камбиальных клеток, то при повреждении миокар­да желудочков регенераторные и адаптивные процессы идут на внутрикле­точном уровне в соседних кардиомиоцитах: они увеличиваются в размерах и берут на себя функцию погибших клеток. На месте погибших кардиомио­цитов образуется соединительнотканный рубец. В последнее время уста­новлено, что некроз кардиомиоцитов при инфаркте миокарда захватывает только кардиомиоциты сравнительно небольшого участка зоны инфаркта и близлежащей зоны. Более значительное количество кардиомиоцитов, окру­жающих зону инфаркта, погибает путем апрптоза, и этот процесс является ведущим в гибели клеток сердечной мышцы. Поэтому лечение инфаркта ми­окарда в первую очередь должно быть направлено на подавление апоптоза кардиомиоцитов в первые сутки после наступления инфаркта.

При повреждении миокарда предсердий в небольшом объеме может осуществляться регенерация на клеточном уровне.

Стимуляция репаративной регенерации сердечной мышечной ткани. 1) Предотвращение апоптоза кардиомиоцитов назначением препаратов, улучшающих микроциркуляцию миокарда, снижающих свертывание кро­ви, ее вязкость и улучшающих реологические свойства крови. Успешная борьба с постинфарктным апоптозом кардиомиоцитов является важным условием дальнейшей успешной регенерации миокарда; 2) Назначение анаболических препаратов (витаминного комплекса, препаратов РНК и ДНК, АТФ и др.); 3) Раннее применение дозированных физических нагру­зок, комплекса упражнений лечебной физкультуры.

В последние годы в экспериментальных условиях для стимуляции ре­генерации сердечной мышечной ткани стали применять трансплантацию миосателлитоцитов скелетной мышечной ткани. Установлено, что введен­ные в миокард миосателлитоциты формируют скелетные мышечные во­локна, устанавливающие тесную не только структурную, но и функцио­нальную связь с кардиомиоцитами. Поскольку замещение дефекта мио­карда не инертной соединительной, а проявляющей сократительную ак­тивность скелетной мышечной тканью более выигрышно в функциональ­ном и даже в механическом отношении, то дальнейшая разработка этого метода может оказаться перспективной при лечении инфарктов миокарда у людей.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...