Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Комплекс белков в репликационной вилке.




До сих пор мы говорили об участии отдельных белков в репликации так, как будто бы они работают независимо друг от друга. Между тем в действительности большая часть этих белков объединена в крупный комплекс, который быстро движется вдоль ДНК и согласованно осуществляет процесс репликации с высокой точностью. Этот комплекс сравнивают с крошечной "швейной машиной": "деталями" его служат отдельные белки, а источником энергии - реакция гидролиза нуклеозидтрифосфатов. Спираль расплетается ДНК-хеликазой; этому процессу помогают ДНК- топоизомераза, раскручивающая цепи ДНК, и множество молекул дестабилизирующего белка, связывающихся с обеими одиночными цепями ДНК. В области вилки действуют две ДНК-полимеразы - на ведущей и отстающей цепи. На ведущей цепи ДНК-полимераза работает непрерывно, а на отстающей фермент время от времени прерывает и вновь возобновляет свою работу, используя короткие РНК-затравки, синтезируемые ДНК-праймазой. Молекула ДНК-праймазы непосредственно связана с ДНК-хеликазой, образуя структуру, называемую праймосомой. Праймосома движется в направлении раскрывания репликационной вилки и по ходу движения синтезирует РНК-затравку для фрагментов Оказаки. В этом же направлении движется ДНК-полимераза ведущей цепи и, хотя на первый взгляд это трудно представить, ДНК-полимераза отстающей цепи. Для этого, как полагают, последняя накладывает цепь ДНК, которая служит ей матрицей, саму на себя, что и обеспечивает разворот ДНК-полимеразы отстающей цепи на 180 градусов. Согласованное движение двух ДНК-полимераз обеспечивает координированную репликацию обеих нитей. Таким образом, в репликационной вилке одновременно работают около двадцати разных белков (из которых мы назвали только часть), осуществляя сложный, высокоупорядоченный и энергоемкий процесс.

А так же смотрите третий вопрос.

 

 

5. Репликоны эукариот. Скорость движения репликативных вилок у прокариот и эукариот. ДНК-полимераза эукариот. Экзонуклеазная активность ДНК-полимеразы.

Реплико́н — молекула или участок ДНК или РНК, реплицирующийся из одной точки начала репликации.

В каждой эукариотической хромосоме имеется множество репликонов. Средний размер такого репликона невелик по сравнению с прокариотическим: около 40 000 пар оснований у дрожжей и плодовой мушки и около 100 000 пар оснований у других животных. Размер отдельных репликонов внутри генома может отличаться более чем в 10 раз. Как правило, в каждой точке начала репликации формируются две репликационные вилки, то есть осуществляется двунаправленная репликация. В отличие от бактериальных, репликоны эукариот предположительно не имеют сайтов терминации репликации. Более вероятно, что репликационные вилки продолжают своё движение до тех пор, пока не встретят вилку, движущуюся навстречу[3].

По имеющимся данным, репликоны эукариот реплицируются не одновременно, а в определённой временной последовательности. Известно, что репликоны, расположенные рядом с активными генами, как правило, реплицируются первыми, а репликоны в области гетерохроматина — последними. Есть основания полагать, что регуляция активности репликонов имеет региональный характер, то есть группы репликонов, расположенных недалеко друг от друга активируются совместно[3].

Митохондрии, появляющиеся в эукариотических клетках, используют однонаправленную репликацию с двумя точками начала репликации.

В хромосомах эукариот репликационные вилки движутся со скоростью около 50 нуклеотидов в секунду. Это в 10 раз меньше, чем у бактерий, что, возможно, связано с большей трудностью репликации ДНК, упакованной в хроматин.

ДНК-полимеразы осуществляют синтез дочерних нитей ДНК при репликации, застраивают поврежденные участки ДНК в ходе репарации и потому играют ключевую роль в процессах репродукции генома и сохранения его интактной структуры.

В клетках эукариот имеются, по меньшей мере, шесть различных ДНК- зависимых ДНК-полимераз: альфа, бета, дельта, эпсилон, гамма и дзета, которые выполняют различные функции в синтезе ДНК. Ферменты альфа и бета-типа обнаружены более 30 лет назад и изучены относительно хорошо. Новый всплеск интереса исследователей к ДНК-полимеразам эукариот на рубеже 90-х годов был связан с открытием ДНК-полимераз дельта и эпсилон.

ДНК-полимераза I E. coli (Pol I) не связывается с молекулами двухцепочечной кольцевой ДНК. Однако, если такие молекулы денатурировать и получить одноцепочечные формы, то с последними полимераза связывается в количествах, пропорциональных длине этих участков — примерно одна молекула на 300 нуклеотидных остатков. Pol l связывается с одноцепочечными участками двойной спирали ДНК, в местах одноцепочечных разрывов с З'-гидроксилом и 5'-фосфатом, а также с концами двухцепочечных молекул ДНК.

Фермент состоит из мономерной полипептидной цепи с молекулярной массой 103 кДа и имеет 3-х доменную структуру. Каждый домен обладает своей ферментативной активностью: 5’ - 3’ полимеразной, 3’ - 5’ экзонуклезной, 5’ - 3’ экзонуклеазной.

1. 5'— 3' полимеразная активность. Для реакции необходимо наличие одноцепочечной ДНК-матрицы и комплементарного участку этой цепи фрагмента — праймера (затравки) с З'-ОН концом.

2. 3'- 5' экзонуклеазная активность. Гидролизует одноцепочечную или двухцепочечную ДНК с З'-ОН конца. 3'—5' нуклеаза расщепляет диэфирную связь только в неспаренных участках ДНК. Известно, что при полимеразной реакции с определенной частотой возможно включение в растущую цепь некомплементарного нуклеотида. Однако полимераза не может присоединять нуклеотид к неправильно спаренному концу, образовавшемуся при ее участии. На помощь приходит 3'—5' экзонуклеаза, убирающая ошибочный нуклеотид, на место которого затем присоединяется правильный нуклеотид-предшественник. 3'—5' экзонуклеолитическая активность проявляется в направлении, обратном синтезу ДНК (см. рис. 34). Таким образом, 3'—5' экзонуклеазная активность ДНК-полимеразы играет важную роль в точности полимеризации, направляемой матрицей. Эффективность, или число оборотов, данной экзонуклеазы в оптимальных условиях составляет 2% от числа оборотов субъединицы с полимеразной активностью.

3. 5'— 3' экзонуклеазная активность. Деградирует одну цепь двухцепочечной ДНК, начиная со свободного 5'-конца. В отличие от 3'—5' экзонуклеазы 5'—3' экзонуклеаза расщепляет диэфирную связь только в спаренных участках двухцепочечной молекулы ДНК. Более того, в то время как 3'—5' нуклеаза отщепляет одномоментно только один нуклеотид, 5'—3' нуклеаза может вырезать с 5'- конца олигонуклеотиды длиной до десяти остатков (около 20% продуктов гидролиза): Скорость нуклеазного отщепления увеличивается на порядок при одновременно протекающей реакции полимеризации. При этом увеличивается относительное количество олигонуклеотидов в продуктах гидролиза ДНК.

Такое сочетание ферментативных активностей позволяет ДНК-полимеразе I E. coli играть активную роль в репарации повреждений ДНК in vivo. N - концевой домен соединен с соседним петлей из аминокислотных остатков и легко отделяется с помощью протеолитических ферментов. Оставшаяся часть бифункциональна, так как состоит из полимеразы и 3’ - 5’ экзонуклезы. Она названа фрагментом Кленова (по фамилии одного из авторов, описавших ее). Фрагмент Кленова (Pol IK) обычно используют для достройки одноцепочечных 5'-концов на двухцепочечной ДНК, часто генерируемых рестриктазами, до тупых; для синтеза второй цепи на одноцепочечной ДНК, а также для гидролиза одноцепочечных З'-концов на двухцепочечных молекулах ДНК.

6. Нуклеосома как единица структурной организации хроматина.Октамер гистонов в составе нуклеосомы. Линкер и линкерный гистон.

В ядре эукариотической клетки ДНК упакована в хроматин. Это характерная особенность организации генома эукариот. Хроматин эукариотической клетки состоит из ДНК, связанной с различными ядерными белками.

Нуклеосома – первый уровень компактизации ДНК Четыре гистоны Н2А, Н2В, Н3 и Н4 составляют белковую сердцевину нуклеосомы. Их глобулярные участки ассоциируют друг с другом с образованием двух гетеродимеров (H2A-H2B) и тетрамера (H3/H4)2. Гетеродимеры взаимодействуют с тетрамером и образуют коровую частицу (гистоновый октамер).

Линкер (linker oligonucleotide): в геномике — синтетический олигонуклеотид, присоединяемый с помощью ДНК-лигазы к фрагменту ДНК для того, чтобы придать концам этого фрагмента структуру с заданными свойствами. Часто линкеры содержат участки, способные расщепляться рестрикционными эндонуклеазам

Гистоны — обширный класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и вэпигенетической регуляции таких ядерных процессов, как транскрипция,репликация и репарация. Существует пять различных типов гистонов H1/Н5, H2A, H2B, H3, H4. Гистоны H2A, H2B, H3, H4, называемых кóровыми гистонами (от англ. core — сердцевина), формируют нуклеосому, представляющую собой белковую глобулу, вокруг которой накручена нить ДНК. Гистон H1/H5, называемый линкерным гистоном (от англ. link — связь), связывается с внешней стороной нуклеосомы, фиксируя на ней нить ДНК.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...