Однофакторный дисперсионный анализ.
Предположим, что имеется выборок с объемами , , , и наблюдения можно представить в виде , где - номер наблюдения в выборке; - номер выборки; - групповые математические ожидания; - случайные ошибки с =0, о которых предполагается, что они независимы и одинаково расположены. Подобная ситуация возникает, когда существует некий фактор, принимающий различных значений (называемых уровнями), и каждая группа объектов, чьи признаки мы примеряем, подвергается воздействию определенного уровня этого фактора. Методы математической статистики, изучающие воздействие одного фактора на объекты и их признаки, называют в совокупности однофакторным анализом. Предполагается, что ошибки нормально распределены: . Тогда можно изучать влияние фактора, вычисляя дисперсии некоторых величин. Совокупность этих методов называют однофакторным дисперсионным анализом. Основной гипотезой, нуждающейся в проверке, является гипотеза о равенстве групповых средних . Иными словами, проверяют гипотезу о том, что фактор вообще не влияет на наблюдения. В случае нормальных ошибок ее можно проверить, вычислив две разные оценки дисперсии. Рассмотрим группу экспериментальных животных, подвергнутых ультрафиолетовому облучению. В процессе эксперимента измерялась температура тела животных. Результаты измерений были занесены в таблицу:
Физический фактор А (ультрафиолетовое излучение) имеет постоянных уровней (3 различных мощности облучения). На всех уровнях распределения случайной величины Х (температуры тела животного) предполагается нормальным, а дисперсии одинаковыми, хотя и неизвестными.
В данном эксперименте число проведенных наблюдений при действии каждого из уровней фактора одинаково. Все значения величины Х, наблюдаемые при каждом фиксированном уровне фактора Аj, составляют группу, и в последней строке таблицы представлены соответствующие выборочные групповые средние, вычисленные по формуле . Здесь n – число испытаний, – номер столбца, - номер строки, в которой расположено данное значение случайной величины. Общая средняя арифметическая всех наблюдений находится как . Введем следующие понятия: Факторная сумма квадратов отклонений групповых средних от общей средней , которая характеризует рассеивание «между группами» (т.е. рассеивание за счет исследуемого фактора): , Остаточная сумма квадратов отклонений наблюдаемых значений группы от своей групповой средней , которая характеризует рассеивание «внутри групп» (за счет случайных причин): . Общая сумма квадратов отклонений наблюдаемых значений от общей средней : , Можно доказать следующее равенство: . С помощью , производится оценка общей, факторной и остаточной дисперсий: , , . В основе однофакторного дисперсионного анализа лежит тесная связь между различием в групповых средних и соотношением между двумя видами дисперсий – факторной, которая характеризует влияние фактора А на величину Х, и остаточной, которая характеризует влияние случайных причин. Сравнивая факторную дисперсию с остаточной по величине их отношения судят, насколько сильно проявляется влияние фактора. Для сравнения двух дисперсий используют показатель критерия Фишера . При этом при заданном уровне значимости проверяют нулевую гипотезу о равенстве факторной и остаточной дисперсии (изучаемый фактор не вызывает изменчивости признака) при конкурирующей гипотезе об их неравенстве (изучаемый фактор вызывает изменчивость признака).
По таблице критических значений распределения Фишера – Снедекора (см. приложение 6) при уровне значимости, равном половине заданного уровня , находят критическое значение . Здесь . Если , нулевую гипотезу считают согласующейся с результатами наблюдений. Если , то эту гипотезу отвергают в пользу конкурирующей. Замечание. Если окажется, что , следует сделать вывод об отсутствии влияния фактора А на Х. Если проверка покажет значимость различий между и ,следует сделать вывод о существенном влиянии фактора А на Х. Обычно для упрощенная расчетов фактурную и остаточную дисперсии рассчитывают не по экспериментальным значениям величины Х, а по значениям , где постоянная С представляет собой произвольное число, близкое к среднему значению всех результатов наблюдений. Вернемся к нашему примеру. Вычтем из всех значений постоянное число С=37,5 близкое к общему среднему =37,51 и составим таблицу:
Общая средняя будет равна Определим значения , Определим значения факторной и остаточной дисперсий: , . Так как , следует проверить значимость их различия. Найдем экспериментальное значение критерия: . Сравним его с критическим значением распределения Фишера – Снедекора для уровня значимости 0,05 (см. приложение 6): . Поскольку можно утверждать, что при уровне значимости =0,05 рассматриваемый физический фактор оказывает влияние на температуру тела животного. Критерий Фишера указывает на влияние изучаемого фактора (если ) на изменчивость признака. Однако он не указывает на силу влияния этого фактора. В качестве показателя силы влияния фактора на изменчивость признака используют величину : . Оценим силу влияния ультрафиолетового облучения на повышение температуры тела животных: или 80,5% Таким образом, влияние ультрафиолетового облучения на повышение температуры тела животных составляет 80,5%, а 19,5% обусловлены случайными причинами.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|