Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Оценка генеральной средней.




Теорема: Выборочная средняя повторной выборки есть несмещённая и состоятельная оценка генеральной средней , причем - дисперсия выборочной средней.

Выборочная средняя повторной выборки для нормально распределенной генеральной совокупности является эффективной оценкой генеральной средней

Определение: Среднее квадратическое отклонение выборочной средней называется стандартной ошибкой выборки

- стандартная ошибка выборки

Величину средней и её стандартную ошибку записывают так:

Ошибка средней арифметической может быть выражена в относительных величинах, т.е. в %. В этом случае её называют показателем точности и вычисляют по формуле:

 
 

 

 


Относительная ошибка выборки показывает, на сколько процентов выборочная оценка отклоняется от параметра генеральной совокупности.

Чем меньше величина , тем достовернее, надёжнее полученная средняя. Точность средней арифметической является приемлемой, если этот коэффициент не превышает 5%.

При выборке малого объема точечная оценка может разительно отличаться от оцениваемого параметра, т.е. приводить к грубым ошибкам.

По этой причине при небольшом объеме выборки следует пользоваться интервальными оценками.

Интервальные оценки позволяют установить точность и надежность оценок.

Пусть найденная по данным выборки статистическая характеристика Θ* служит оценкой неизвестного параметра Θ.

Если δ > 0 и │Θ – Θ*│< δ, то чем меньше δ, тем оценка точнее.

Т.о., положительное число δ характеризует точность оценки.

Однако статистические методы не позволяют категорически утверждать, что оценка Θ* удовлетворяет неравенству │Θ – Θ*│< δ; можно лишь говорить о вероятности , с которой это неравенство осуществляется.

Надежностью (доверительной вероятностью) оценки Θ по Θ* называют вероятность , с которой осуществляется неравенство │Θ – Θ*│< δ

= 0,95; 0,99; 0,999.

Заменив неравенство │Θ – Θ*│< δ равносильным ему двойным неравенством

Вероятность того, что интервал (Θ* - δ; Θ* + δ) заключает в себе (покрывает) неизвестный параметр Θ, равна .

Доверительным интервалом называется случайный интервал

*- δ; Θ*+ δ), в пределах которого с вероятностью находится неизвестный оцениваемый параметр.

Число называется доверительной вероятностью, уровнем доверия или надежностью оценки. Это значение задают заранее. Тогда, зная закон распределения случайной величины, можно найти доверительный интервал.

Число p(или ) называется уровнем значимости и показывает, с какой вероятностью заключение о надежности оценки ошибочно.

Его находят по формуле

.

Величина может иметь три значения: 0,95; 0,99; 0,999.

Соответственно p: 0,05; 0,01; 0,001.

Очевидно, что чем меньше p, тем точнее оценка.

На рис.16 показан геометрический смысл доверительной вероятности, уровня значимости и доверительного интервала. Длина доверительного интервала определяется % (значение доверительной вероятности, выраженной в процентах) площади под нормальной кривой выборочного распределения некоторой случайной величины. Уровень значимости соответствует той оставшейся части (в %) площади под нормально кривой, которая выходит за границы доверительного интервала.

 

 

Рис.16 Доверительный интервал, уровень значимости , доверительная вероятность для кривой нормального распределения.

Например, доверительная вероятность означает, что длина искомого доверительного интервала ограничивается 95% площади под кривой нормального распределения, т.е. полученная интервальная оценка справедлива для 95% членов генеральной совокупности. Оставшиеся 5% могут иметь отклонения от значений полученной оценки. С увеличением доверительной вероятности (уменьшением уровня значимости) увеличивается длина доверительного интервала.

Определение: наибольшее отклонение оценки от оцениваемого параметра в частности, выборочной средней (или доли) от генеральной средней (или доли), которое возможно с заданной доверительной вероятностью , называется предельной ошибкой выборки

Ошибка является ошибкой репрезентативности (представительности) выборки. Она возникает только вследствие того, что исследуется не вся совокупность, а лишь часть её (выборка), отобранная случайно.

Прежде, чем перейти к интервальным оценкам параметров распределения, рассмотрим некоторые важные распределения случайной величины.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...