Центральная предельная теорема, а также формулы для вычисления стандартной ошибки среднего и стандартной ошибки доли признака основаны на предположении, что выборки извлекаются из генеральной совокупности с возвращением. Однако практически во всех статистических исследованиях выборки извлекаются из генеральных совокупностей конечного объема N без возвращения. Если объем выборок п достаточно велик, так что n/N > 0,05, то при вычислении стандартной ошибки среднего и стандартной ошибки доли признака следует учитывать поправочный коэффициент Кп для конечной генеральной совокупности. Эта поправка вычисляется по формуле (20):
(18)
где n — объем выборки, а N — объем генеральной совокупности.
Таким образом, формулы для вычисления стандартной ошибки среднего и стандартной ошибки доли признака принимают следующий вид.
Стандартная ошибка среднего для конечной генеральной совокупности
(19)
стандартная ошибка доли признака для конечной генеральной совокупности (20)
Анализ формулы (18) показывает, что поправочный коэффициент для конечной генеральной совокупности меньше единицы. Поскольку этот коэффициент умножается на стандартную ошибку, скорректированная стандартная ошибка уменьшается. Таким образом, с учетом поправочного коэффициента для конечной генеральной совокупности мы получаем более точные оценки.
Randomly Selected Values
Randomly Selected Values
Среднее
56,4
Стандартная ошибка
10,65123884
Стандартное отклонение
33,68217465
Дисперсия выборки
1134,488889
Интервал
Минимум
Максимум
Сумма
Счет
Randomly Selected Values
Randomly Selected Values
Среднее
52,90909
Стандартная ошибка
5,4355
Медиана
Стандартное отклонение
25,4949
Дисперсия выборки
649,991
Интервал
Минимум
Максимум
Сумма
Счет
Randomly Selected Values
Randomly Selected Values
Среднее
46,56
Стандартная ошибка
5,868014997
Медиана
Стандартное отклонение
29,34007498
Дисперсия выборки
860,84
Эксцесс
-1,139292615
Асимметричность
0,031714668
Интервал
Минимум
Максимум
Сумма
Счет
Таблица 1
Функция нормального распределения
Определяет площадь под кривой распределения в пределах от - ¥ до t
Z
0,00
0.01
0,02
0,03
0,04
0,05
0,06
0,07
0.08
0,09
-3,0
0,00135
0,00131
0,00126
0,00122
0,00118
0,00114
0,00111
0,00107
0,00103
0,00100
-2,9
0,0019
0,0018
0,0018
0,0017
0,0016
0,0016
0,0015
0,0015
0,0014
0,0014
-2,8
0,0026
0,0025
0,0024
0,0023
0,0023
0,0022
0,0021
0,0021
0,0020
0,0019
-2,7
0,0035
0,0034
0,0033
0,0032
0,0031
0,0030
0,0029
0,0028
0,0027
0,0026
-2,6
0,0047
0,0045
0,0044
0,0043
0,0041
0,0040
0,0039
0,0038
0,0037
0,0036
-2,5
0,0062
0,0060
0,0059
0,0057
0,0055
0,0054
0,0052
0,0051
0,0049
0,0048
-2,4
0,0082
0,0080
0,0078
0,0075
0,0073
0,0071
0,0069
0,0068
0,0066
0,0064
-2,3
0,0107
0,0104
0,0102
0,0099
0,0096
0,0094
0,0091
0,0089
0,0087
0,0084
-2,2
0,0139
0,0136
0,0132
0,0129
0,0125
0,0122
0,0119
0,0116
0,0113
0,0110
-2,1
0,0179
0,0174
0,0170
0,0166
0,0162
0,0158
0,0154
0,0150
0,0146
0,0143
-2,0
0,0228
0,0222
0,0217
0,0212
0,0207
0,0202
0,0197
0,0192
0,0188
0,0183
-1,9
0,0287
0,0281
0,0274
0,0268
0,0262
0,0256
0,0250
0,0244
0,0239
0,0233
-1,8
0,0359
0,0351
0,0344
0,0336
0,0329
0,0322
0,0314
0,0307
0,0301
0,0294
-1,7
0,0446
0,0436
0,0427
0,0418
0,0409
0,0401
0,0392
0,0384
0,0375
0,0367
-1,6
0,0548
0,0537
0,0526
0,0516
0,0505
0,0495
0,0485
0,0475
0,0465
0,0455
-1,5
0,0668
0,0655
0,0643
0,0630
0,0618
0,0606
0,0594
0,0582
0,0571
0,0559
-1,4
0,0808
0,0793
0,0778
0,0764
0,0749
0,0735
0,0721
0,0708
0,0694
0,0681
-1,3
0,0968
0,0951
0,0934
0,0918
0,0901
0,0885
0,0869
0,0853
0,0838
0,0823
-1.2
0,1151
0,1131
0,1112
0,1093
0,1075
0,1056
0,1038
0,1020
0,1003
0,0985
-1,1
0,1357
0,1335
0,1314
0,1292
0,1271
0,1251
0,1230
0,1210
0,1190
0,1170
-1,0
0,1587
0,1562
0,1539
0,1515
0,1492
0,1469
0,1446
0,1423
0,1401
0,1379
-0,9
0,1841
0,1814
0,1788
0,1762
0,1736
0,1711
0,1685
0,1660
0,1635
0,1611
-0,8
0,2119
0,2090
0,2061
0,2033
0,2005
0,1977
0,1949
0,1922
0,1894
0,1867
-0,7
0,2420
0,2388
0,2358
0,2327
0,2296
0,2266
0,2236
0,2206
0,2177
0,2148
-0,6
0,2743
0,2709
0,2676
0,2643
0,2611
0,2578
0,2546
0,2514
0,2482
0,2451
-0,5
0,3085
0,3050
0,3015
0,2981
0,2946
0,2912
0,2877
0,2843
0,2810
0,2776
-0,4
0,3446
0,3409
0,3372
0,3336
0,3300
0,3264
0,3228
0,3192
0,3156
0,3121
-0,3
0,3821
0,3783
0,3745
0,3707
0,3669
0,3632
0,3594
0,3557
0,3520
0,3483
-0,2
0,4207
0,4168
0,4129
0,4090
0,4052
0,4013
0,3974
0,3936
0,3897
0,3859
-0,1
0,4602
0,4562
0,4522
0,4483
0,4443
0,4404
0,4364
0,4325
0,4286
0,4247
-0,0
0,5000
0,4960
0,4920
0,4880
0,4840
0,4801
0,4761
0,4721
0,4681
0,4641
Продолжение табл. 1
0,0
0,5000
0,5040
0,5080
0,5120
0,5160
0,5199
0,5239
0,5279
0,5319
0,5359
0,1
0,5398
0,5438
0,5478
0,5517
0,5557
0,5596
0,5636
0,5675
0,5714
0,5753
0,2
0,5793
0,5832
0,5871
0,5910
0,5948
0,5987
0,6026
0,6064
0,6103
0,6141
0,3
0,6179
0,6217
0,6255
0,6293
0,6331
0,6368
0,6406
0,6443
0,6480
0,6517
0,4
0,6554
0,6591
0,6628
0,6664
0,6700
0,6736
0,6772
0,6808
0,6844
0,6879
0,5
0,6915
0,6950
0,6985
0,7019
0,7054
0,7088
0,7123
0,7157
0,7190
0,7224
0,6
0,7257
0,7291
0,7324
0,7357
0,7389
0,7422
0,7454
0,7486
0,7518
0,7549
0,7
0,7580
0,7612
0,7642
0,7673
0,7704
0,7734
0,7764
0,7794
0,7823
0,7852
0,8
0,7881
0,7910
0,7939
0,7967
0,7995
0,8023
0,8051
0,8078
0,8106
0,8133
0,9
0,8159
0,8186
0,8212
0,8238
0,8264
0,8289
0,8315
0,8340
0,8365
0,8389
1,0
0,8413
0,8438
0,8461
0,8485
0,8508
0,8531
0,8554
0,8577
0,8599
0,8621
1,1
0,8643
0,8665
0,8686
0,8708
0,8729
0,8749
0,8770
0,8790
0,8810
0,8830
1,2
0,8849
0,8869
0,8888
0,8907
0,8925
0,8944
0,8962
0,8980
0,8997
0,9015
1,3
0,9032
0,9049
0,9066
0,9082
0,9099
0,9115
0,9131
0,9147
0,9162
0,9177
1,4
0,9192
0,9207
0,9222
0,9236
0,9251
0,9265
0,9279
0,9292
0,9306
0,9319
1,5
0,9332
0,9345
0,9357
0,9370
0,9382
0,9394
0,9406
0,9418
0,9429
0,9441
1,6
0,9452
0,9463
0,9474
0,9484
0,9495
0,9505
0,9515
0,9525
0,9535
0,9545
1,7
0,9554
0,9564
0,9573
0,9582
0,9591
0,9599
0,9608
0,9616
0,9625
0,9633
1,8
0,9641
0,9649
0,9656
0,9664
0,9671
0,9678
0,9686
0,9693
0,9699
0,9706
1,9
0,9713
0,9719
0,9726
0,9732
0,9738
0,9744
0,9750
0,9756
0,9761
0,9767
2,0
0,9772
0,9778
0,9783
0,9788
0,9793
0,9798
0,9803
0,9808
0,9812
0,9817
2,1
0,9821
0,9826
0,9830
0,9834
0,9838
0,9842
0,9846
0,9850
0,9854
0,9857
2,2
0,9861
0,9864
0,9868
0,9871
0,9875
0,9878
0,9881
0,9884
0,9887
0,9890
2,3
0,9893
0,9896
0,9898
0,9901
0,9904
0,9906
0,9909
0,9911
0,9913
0,9916
2,4
0,9918
0,9920
0,9922
0,9925
0,9927
0,9929
0,9931
0,9932
0,9934
0,9936
2,5
0,9938
0,9940
0,9941
0,9943
0,9945
0,9946
0,9948
0,9949
0,9951
0,9952
2,6
0,9953-
0,9955
0,9956
0,9957
0,9959
0,9960
0,9961
0,9962
0,9963
0,9964
2,7
0,9965
0,9966
0,9967
0,9968
0,9969
0,9970
0,9971
0,9972
0,9973
0,9974
2,8
0,9974
0,9975
0,9976
0,9977
0,9977
0,9978
0,9979
0,9979
0,9980
0,9981
2,9
0,9981
0,9982
0,9982
0,9983
0,9984
0,9984
0,9985
0,9985
0,9986
0,9986
3,0
0,9986
0,9987
0,9987
0,9988
0,9988
0,9989
0,99889
0,9989
0,9990
0,9990
Таблица 2
Значения функции
Определяет вероятность попадания случайной величины Х, подчиненной нормальному закону, в симметричный отрезок (- Х, + Х)
х
0.0
0.0000
0.1
0.0797
0.2
0.1585
0.3
0.2358
0.4
0.3108
0.5
0. 3829
0.6
0.4515
0.7
0.5161
0.8
0.5763
0.9
0.6319
1.0
0. 6827
7109.
1.1
0. 7287
1.2
0. 7699
1.3
0. 8064
1.4
0. 8385
1.5
0. 8664
1.6
0. 8904
1.7
0.9 1087
1.8
0.9 2814
1.9
0.9 4257
2.0
0.9 54501
2.1
0.9 6427
2.2
0.9 7219
2.3
0.9 7855
2.4
0.9 8360
2.5
0.9 8758
2.6
0.9 9068
2.7
0.9 9307
2.8
0.9 9489
2.9
0.9 9627
3.0
0.9 9730
х
Примечание. В столбце «0» полужирным шрифтом выделена часть числа, которая является общей частью для всех чисел данной строки.
[1] В дальнейшем функцию f( x) будем именовать плотностью распределения, а F (x) - функцией распределения.
[2] В литературе по теории вероятностей плотность стандартизованного нормального распределения имеет обозначение N (0,1), т.е. нормальное распределение с параметрами: μ =0; σ =1.
[3] Следует иметь в виду, что среднее арифметическое выборки объема n вычисляется по формуле:.
[4] Формулу (12) можно применять для аппроксимации стандартной ошибки среднего, если выборки извлекаются из генеральной совокупности без возвращения при условии, что каждая выборка содержит не более 5% элементов всей генеральной совокупности.