Классификация поверхностей. Задание поверхности на комплексном чертеже.
Поверхности разделяют: o По закону образования - на закономерные и незакономерные. o По признаку развёртывания в плоскость - развёртывающиеся и неразвёртывающиеся. o По форме образующей: o По способу перемещения образующей:
Поверхности на комплексном чертеже могут быть заданы: o Проекциями направляющих и способом перемещения по ним образующих. o Семейством линий, принадлежащих поверхности - каркасный способ задания поверхности. o Очерком поверхности, т.е. линиями, ограничивающими на комплексном чертеже область существования проекций. 2. Линейчатые поверхности: Линейчатая поверхность в общем случае однозначно определяется тремя направляющими линиями, т.е. при перемещении по ним образующей. Линейчатые поверхности делятся на развёртывающиеся и неразвёртывающиеся. К развёртывающимся относятся: цилиндрические поверхности, конические поверхности, поверхности с ребром возврата (торса), призматические поверхности, пирамидальные поверхности.
Цилиндрическая поверхность.
Коническая поверхность получается при движении прямолинейной образующей l по криволинейной направляющей m, причём образующая l постоянно проходит через неподвижную точку S.
Цилиндроид, коноид, косая плоскость.
Цилиндроид - образуется движением по двум криволинейным направляющим m и n прямолинейной образующей l, остающейся всё время параллельной плоскости параллелизма. Рассмотрим построение проекций точки и линии последовательно на перечисленных выше поверхностях вращения.
Цилиндр
Пусть задан прямой цилиндр, плоскости основания которого параллельны плоскости П 1(рис.). Решим задачу. Зная фронтальные проекции точек А и В, лежащих на боковой поверхности цилиндра, построить отсутствующие проекции. Поскольку на П 1 боковая поверхность цилиндра проецируется в окружность, то А 1 и В 1 лежат, очевидно, на ней. Их положение находим по вертикальным линиям связи. Профильные проекции А 3, В 3 лежат, как известно, на горизонтальных линиях связи с фронтальными проекциями А 2 и В 2. При этом, в соответствии с правилами ортогонального проецирования, расстояние от Ф3 до профильной проекции точки равно расстоянию от Ф1 до горизонтальной проекции точки. Причем точка В 3 – невидимая, так как лежит на невидимой части боковой поверхности цилиндра. Решим следующую задачу: по заданной фронтальной проекции А2В2 линии (рис.) построим отсутствующие проекции. Горизонтальная проекция А1В1 совпадает с окружностью, так как все точки линии АВ лежат на боковой поверхности цилиндра.
Конус
Решим те же задачи построения проекций точки и линии, лежащих на поверхности конуса (рис.).
Для построение горизонтальной проекции точки, например А, необходимо через ее фронтальную проекцию провести горизонтальную линию. Тогда на П 1 эта линия 12 представляет собой дугу окружности диаметром 1222=1121. По линии связи на ней находим А 1. Аналогично, проводя дугу окружности радиусом S 131, равным расстоянию от оси конуса до точки 32 на его контуре, определяем положение на ней точки В 1. По этим проекциям находим положение А 3, В 3. По известной проекции А 2 В 2 линии на поверхности конуса построить горизонтальную и профильную. Выбрав на линии А 2 В 2 промежуточную точку 42, найдем 41 так же, как сделали это для точек А и В. Соединив точки А 1, 41, В 1, получим горизонтальную проекцию линии АВ. Для построения профильной проекции А 3 В 3 необходимо найти положение контурной точки 4, лежащей на SA. По фронтальной проекции 42, лежащей на S 2 A 2, находим профильную проекцию 43, лежащую на S 3 A 3. Теперь точки А 3, 43, В 3 можно соединить линией. При соединении точек линией всегда надо руководствоваться достаточно очевидным правилом: на каждой проекции точки, принадлежащие линии, следует соединять в одинаковой последовательности. Так, если на фронтальной проекции точка 4 является промежуточной, то она будет промежуточной и на других проекциях.
Сфера
Проекцией сферы на любую плоскость проекций является окружность. Рассмотрим построение проекций точек на поверхности сферы (рис. 4.6). Задача состоит в том, чтобы по известным проекциям построить отсутствующие. Для упрощения решения необходимо все характерные точки сферы обозначить. Точки, лежащие на экваторе, обозначим через А, В, С, D; точки, лежащие на главном меридиане – А, Е, С, F. Очевидно, что точки А и С принадлежат одновременно и экватору, и главному меридиану.
При построении проекций следует иметь ввиду, что любая параллель на П 2 проецируется в горизонтальную прямую, а на П 1 в окружность.
Рассмотрим другую точку N, проекция которой N 2 на П 2 является невидимой. Аналогично предыдущему построим N 1, лежащую на дуге окружности радиусом F 121. Так как N 2 - невидимая, то N 1 лежит выше оси Ф1. А поскольку точка N находится на поверхности нижнего полушария, что видно из положения N 2, то N 1 - невидимая. Профильная проекция N 3 строится по известному правилу взаимосвязи проекций. При этом, так как N 1 лежит выше оси Ф1, то N 3 - левее Ф3. Поскольку точка N лежит в правом полушарии, то на П 3 она невидимая, так как на П 3 все правое полушарие закрыто от нас левым и является невидимым. Видимость и невидимость полушарий, а следовательно, и точек, лежащих на них, можно легко определить, рассматривая с разных точек зрения обыкновенный резиновый мячик, нарисовав на нем экватор и два меридиана, расположенных в плоскостях, перпендикулярных друг другу. Построим горизонтальную и профильную проекции линии МN, если известна ее фронтальная проекция М 2 N 2, состоящую из прямолинейных отрезков М 232 и 32 N 2. Очевидно, что точка 31 лежит на А 1 Е 1, так как 32 - на А 2 Е 2. При этом прямая МN проходит через экватор (точка 42). Следовательно, на П 1 – через точку 41. А участок 4131 – невидимый, поскольку, как видно по его фронтальной проекции 4232, он лежит в нижнем полушарии, т.е. ниже экватора. Для построения проекций участка 3 N выберем промежуточную точку 52. Тогда точка 51 лежит на дуге окружности радиуса 5262. Соединив точки 31, 51, N 1, получим искомую линию М 1413151 N 1.
Построим профильную проекцию М 3 N 3, которая проходит через те же промежуточные точки. Так как М 232 – вертикальная прямая, то на П 3 она представляет собой дугу М 333 окружности радиуса 4232=А333. Точка 53 – контурная для профильной проекции сферы. Значит, остается соединить точки 33, 53, N3 кривой линией. При этом участок 53 N 3 – невидимый. Если в нашу задачу входит более точное построение проекций линии MN, тогда на всех участках, где ее проекции не являются отрезками прямой или окружности, необходимо выбрать несколько промежуточных точек.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|