Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Типы воздушного потока. Сопротивление воздухоносных путей




Типы воздушного потока

По аналогии с законом Ома для электрической цепи, объемная скорость газово­го потока в трубке определяется давлением и сопротивлением:

v=p/r, [2-ю]

где: V — объемная скорость потока, Р — движущее давление, R — сопротивление.

Поток через систему трубок может приобретать один из трех паттернов (рис. 2-12). Ламинарный поток характеризуется слоями движущегося газа, парал­лельными как друг другу, так и стенкам трубок (рис. 2-12А). Ламинарный поток преобладает при низких скоростях газа и описывается законом Пуазейля:

V = f! 5ll [2-11l

8л1 '

где: V — объемная скорость потока, Р — давление, г •- радиус трубки, г] •- вязкость газа, I длина трубки.

Свойства дыхательной системы, определяющие сопротивление потоку

Рис. 2-12. Типы потока иолдуха но труб­кам. (А) Ламинарный. (Б) Турбулент­ный. (В) Переходный. (Ил: West J Н. Airway resistance. In: Respiratory Physiology: The lisseiHials. 1i h eel. Baltimore: Williams & Wilkins, 1990: Ш1М

Преобразуя уравнение [2-И], получаем:

P. MX [2-12]

яг4

Подставляя константу k вместо 8г|1/яг, получаем:

P = kx V. [2-13]

Из уравнения [2-11 ] следует, что объемная скорость потока прямо зависит от четвертой степени радиуса. Уменьшение радиуса трубки наполовину снижает ско­рость потока в 16 раз.

Турбулентный поток, более хаотичное движение газа вдоль трубки (рис. 2-12Б), преобладает при высоких объемных скоростях потока. Скорость турбулентного по­тока во многом определяется плотностью газа; повышение его плотности приводит к уменьшению скорости потока. Кроме того, движущее давление для турбулентного потока пропорционально квадрату его скорости (Р = k х V ). Будет ли поток через систему трубок турбулентным или ламинарным, можно предсказать, рассчитав чис­ло Рейнольдса (Re), — безразмерное число, связывающее среднюю скорость потока, плотность и вязкость газа, а также радиус трубки:

Re = 2rVd/n, [2-14]

где: V — средняя скорость потока, d — плотность газа.

Когда Re превышает 2000, поток турбулентный; когда Re менее 2000, поток ла­минарный.

Переходный поток характеризуется завихрениями, возникающими в месте би­фуркации трубки (рис. 2-12В). В условиях дихотомического разветвления трахе обронхиального дерева переходный поток является важным паттерном потока в лег-

Сопротивление воздухоносных путей

Как отмечалось, движущее давление, рассчитанное как разница между альвео­лярным давлением и давлением в ротовой полости при открытой голосовой щели, является одной из двух главных переменных, определяющих объемную скорость потока; другой является сопротивление ВП (Raw). Главным компонентом сопро­тивления ВП является фрикционное сопротивление, оказываемое стенками трахео-бронхиального дерева.

Сопротивление ВП распределяется в дыхательной системе неравномерно. У взрослого, спокойно дышащего с закрытым ртом человека нос оказывает около 50 % общего сопротивления. При дыхании через рот на глотку и гортань приходится около 25 % общего сопротивления; во время физической нагрузки эта величина может увеличиваться до 50 %. На долю внутригрудных крупных ВП - трахеи, доле­вых и сегментарных бронхов - приходится 80 % остающегося сопротивления, ос­тальные 20 % падают на мелкие ВП с диаметром менее 2 мм. Распределение сопро­тивления ВП показано на рис. 2-13. Хотя площади поперечного сечения каждого из периферических ВП малы, их огромное количество дает большую площадь общего поперечного сечения и меньшее сопротивление (гл. 1).

Сопротивление ВП или, как принято в клинике, их проводимость (Gaw, вели­чина обратная сопротивлению) определяют несколько факторов. Одним из важных является объем легких. При более высоком объеме легких паренхима оказывает большее растягивающее действие на ВП. В результате этого площадь поперечного сечения каждого из ВП увеличивается. Большая площадь поперечного сечения при­водит к снижению сопротивления. Это отношение представлено на рис. 2-14.

Дополнительные факторы, которые определяют сопротивление ВП, включают их длину, тонус гладкой мускулатуры и физические свойства (плотность и вяз­кость) газов, проходящих по ВП. В клинике используют то обстоятельство, что со­противление зависит от плотности газа. Пациентам с обструктивной патологией верх-

HHY nKTYmY*m-Ui-TV плгг-лт* тг^г, -. ™ т*. " ----— --------------

рода. Поскольку эта газовая смесь менее плотная, чем воздух, сопротивление верх­них дыхательных путей, имеющих обструкцию, снижается (гл. 4).

Нормальное сопротивление ВП у взрослых при FRC равно примерно 15 см вод. ст. /л/с. При патологии легких несколько механизмов вызывают увели­чение сопротивления. Например, сокращение гладкой мускулатуры бронхов приво­дит к сужению ВП и увеличению Raw при бронхиальной астме (гл. 5). Отек бронхи­альной слизистой и чрезмерная секреция увеличивают Raw у больных хроничес­ким бронхитом. При эмфиземе утрата тканями эластичности и снижение растяги-. вающего действия легочной паренхимы на ВП уменьшает их просвет и увеличивает Raw (гл. 6). Наконец, новообразования, закупоривающие ВП (например, при брон-хогенной карциноме), также увеличивают Raw.

Важным положением является то, что величины многих физических факторов, определяющих сопротивление ВП и объемную скорость воздушного потока, раз­личны в инспираторную и экспираторную фазу дыхательного цикла. Более того, ограничения максимальных скоростей экспираторного потока наблюдаются даже в здоровых легких. Понимание физиологической основы ограничения экспираторно­го потока весьма важно и требует анализа нескольких проблем: петля поток-объем, изообъемная кривая давление-поток, кривая максимальный поток-статическая отдача и теория точки равного давления.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...