§2. Нольмерное шкалирование. §3. Одномерное шкалирование
§2. Нольмерное шкалирование
Во многих психологических исследованиях возникает задача определения единственного или специального значения психологической переменной, аналогично, например, задаче нахождения экстремума функции в математике. Такое специальное значение психологической переменной называется порогом. Впервые в психологии эта проблема была поставлена Э. Гербертом, как задача определения порога сознания — критической точки на континууме состояний от совершенно неосознанного до ясного сознания. Основной вклад в создание процедур пороговых измерении был сделан Г. Фехнером (1860), разработавшим первые методы пороговых измерений. Последующее развитие экспериментальной психологии показало, что порог является универсальной психологической характеристикой, и пороговые измерения получили широкое распространение, особенно в исследованиях познавательных процессов — восприятия, внимания, памяти. В связи с их специфичностью пороговые методы обычно отделяют от остальных методов шкалирования психологических переменных (Вудвортс, Шлоссберг, 1958; Торгерсон, 1958). Однако это основание, разделяющее психологические измерительные процедуры на пороговые методы и методы шкалирования, является чисто содержательным, поэтому оно менее существенно, чем формальное основание, которое объединяет их вместе. В терминах теории измерений определение порога есть нахождение одного шкального значения или локализация точки на психологической шкале. В формальном смысле — это построение психологической шкалы, имеющей единственное значение и нулевую размерность. Поэтому все пороговые методы можно также рассматривать как методы построения психологических шкал, а развитие методов психологического шкалирования рассматривать, соответственно, как разработку процедур, позволяющих постепенно увеличивать размерность психологической шкалы. С этой точки зрения пороговые измерения являются самым простым видом психологического шкалирования. Следующий шаг в развитии психологических измерений состоял в разработке методов, позволяющих построить шкалу, содержащую все значения данной психологической переменной. Причем в качестве окончательного результата измерения стремились получить именно " сильную" шкалу.
§3. Одномерное шкалирование
Первый вклад в создание этих процедур был сделан также Фехнером (1860), разработавшим первую модель одномерного шкалирования, но основную детальную проработку процедур одномерного шкалирования осуществил Терстоун (1927, 1929), а затем Стивенс и его сотрудники (1937, 1955), разработавшие методы прямой оценки стимуляции. Далее эти методы развивались в работах шведских психофизиков под сильным влиянием Экмана (1965). Разработанные ими методы построения " сильных" шкал дали возможность психологам быстро продвинуться в решении многих психологических проблем, связанных с различными областями познавательных процессов. Эти методы стали широко распространяться, и здесь сразу же появились принципиальные ограничения, связанные с двумя особенностями этих методов: во-первых, с необходимостью выделения простой, одномерной психологической стимуляции, и, во-вторых, с наличием заранее известной физической шкалы измерения стимула. Но даже когда для стимула существует однозначная физическая шкала измерения, испытуемые, устанавливая метрические отношения между простыми субъективными реакциями, сталкиваются с трудностями. На это указывает большая вариабельность производимых испытуемым оценок. Зачастую она превосходит величину самой оценки в несколько раз (Пьерон, 1966).
Операции установления порядка или эквивалентности значительно проще и стабильнее. Существенным достоинством порядкового шкалирования является возможность его применения для измерений таких стимулов, которые в силу своей сложности не поддаются жестким, метрическим измерениям. Именно поэтому процедуры построения шкал порядка чрезвычайно распространены в таких разделах психологии, как психодиагностика, исследование эмоций, интеллекта и т. д. Такие разные, но необходимые свойства измерительных процедур, как простота и стабильность " слабых" шкал, и точность " сильных" шкал, привели к идее создания такой процедуры, которая позволяет строить шкалу интервалов или шкалу отношений на основе оценок порядка или эквивалентности. Такие шкалы можно назвать производными шкалами интервалов или отношений в отличие от первичных, о которых шла речь выше. Для первичных шкал субъективные операции над объектами (их оценка или сравнение) и числовые операции связаны друг с другом непосредственно, без всякой промежуточной процедуры. Производная шкала методически имеет более сложную структуру, она строится с помощью дополнительной процедуры на базе первичной шкалы и, естественно, что такая процедура имеет смысл, только если производная шкала будет " сильнее" первичной. " Сила" производной шкалы основывается на теоретических допущениях о том, что исследуемые субъективные реакции обладают дополнительными свойствами кроме тех, которые установлены эмпирическими операциями, иначе говоря, здесь предусматривается построение развитой модели шкалирования. Примером построения производной шкалы может служить модель шкалирования Фехнера. В основе модели лежат эмпирические процедуры, устанавливающие для стимулов отношение равенства и порядка. Например, в случае метода " средней ошибки" испытуемому предлагается, по сути дела, производить бинарную классификацию (ответы " да-нет", " равны-неравны" ), подравнивая переменный стимул к стандартному. При многократном повторении этой процедуры значение подравниваемого (переменного) стимула распределяется около значения стандартного в некотором диапазоне неразличимости. Вводится теоретическое предположение, что полученное таким образом распределение имеет форму нормального распределения и величина дисперсии этого распределения принимается за меру порогового различия переменного и стандартного стимулов на субъективной шкале. Далее делается допущение равенства таких мер во всех точках шкалы и, следовательно, вводится единица измерения на шкале; точка абсолютного порога принимается за нуль шкалы, и, таким образом, строится шкала отношений.
Конечно, эти допущения не для всякого случая справедливы, однако там, где их можно сделать, можнопостроить и стабильную шкалу отношений, основываясь на простых оценках. Процедуры построения первичных и производных шкал позволили решить задачу построения точной психофизической функции в области простых ощущений, таких как видимая яркость, громкость различных звуковых тонов, тяжесть и т. п. Существуют достаточно надежные методы для получения экспериментальных данных, на основании которых определяются психофизические функции, связывающие субъективные шкалы с физическими. В случае наличия очевидного физического континуума стимулов, подобно интенсивности светового излучения при измерениях субъективной яркости света, несомненно, что этот континуум можно использовать как базу для построения точной субъективной шкалы. И как только психофизики показали, какими физическими свойствами объектов пользуются люди для своих оценок, соотносить физические шкалы с субъективными оценками стало достаточно простым и надежным делом, что и позволило психофизике из теоретических разделов перейти в прикладные.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|