Арифметические операции над числами с фиксированной точкой
Сложение (вычитание). Операция вычитания приводится к операции сложения путем преобразования чисел в обратный или дополнительный код. Пусть числа А≥0 и В≥0, тогда операция алгебраического сложения выполняется в соответствии с табл. 2.3. Таблица преобразования кодов при алгебраическом сложении Таблица 2.3
Скобки в представленных выражениях указывают на замену операции вычитания операцией сложения с обратным или дополнительным кодом соответствующего числа. Сложение двоичных чисел осуществляется последовательно, поразрядно в соответствии с табл. 2.2. При выполнении сложения цифр необходимо соблюдать следующие правила. 1. Слагаемые должны иметь одинаковое число разрядов. Для выравнивания разрядной сетки слагаемых можно дописывать незначащие нули слева к целой части числа и незначащие нули справа к дробной части числа. 2. Знаковые разряды чисел участвуют в сложении так же, как и значащие. 3. Необходимые преобразования кодов (п.2.3.1) производятся с изменением знаков чисел. Приписанные незначащие нули изменяют свое значение при преобразованиях по общему правилу. 4. При образовании единицы переноса из старшего знакового разряда, в случае использования ОК, эта единица складывается с младшим числовым разрядом. При использовании ДК единица переноса теряется. Знак результата формируется автоматически, результат представляется в том коде, в котором представлены исходные слагаемые. Пример 2.9. Сложить два числа: A10=7; B10=16. Исходные числа имеют различную разрядность, необходимо провести выравнивание разрядной сетки: Сложение в обратном или дополнительном коде дает один и тот же результат:
Обратим внимание, что при сложении цифр отсутствуют переносы в знаковый разряд и из знакового разряда, что свидетельствует о получении правильного результата. Пример 2.10. Сложить два числа:A10 = + 16; В10 = -7 в ОК и ДК. В соответствии с табл. 2.3 должна быть реализована зависимость А+(-В), в которой второй член преобразуется с учетом знака При сложении чисел в ОК и ДК были получены переносы в знаковый разряд и из знакового разряда. В случае ОК перенос из знакового разряда требует дополнительного прибавления единицы младшего разряда (см. п.4 правил). В случае ДК этот перенос игнорируется. Умножение. Умножение двоичных чисел наиболее просто реализуется в прямом коде. Рассмотрим, каким образом оно приводится к операциям сложения и сдвигам. Пример 2.11. Умножить два числа А10=7;В10=5. Перемножим эти числа, представленные прямыми двоичными кодами, так же, как это делается в десятичной системе. Нетрудно видеть, что произведение получается путем сложения частных произведений, представляющих собой разряды множимого, сдвинутые влево в соответствии с позициями разрядов множителя. Частные произведения, полученные умножением на нуль, игнорируются. Важной особенностью операции умножения и-разрядных сомножителей является увеличение разрядности произведения до п+п=2п. Знак произведения формируется путем сложения знаковых разрядов сомножителей. Возможные переносы из знакового разряда игнорируются. Деление. Операция деления, как и в десятичной арифметике, является обратной операции умножения. Покажем, что и эта операция приводится к последовательности операций сложения и сдвига. Пример 2.12. Разделить два числа A10 = 45; В10 = 5. Деление произведено так же, как это делается обычно в десятичной системе. Сначала проверяется, можно ли вычесть значение делителя из старших разрядов делимого. Если возможно, то в разряде частного записывается единица и определяется частная разница. В противном случае в частное записывается нуль и разряды делителя сдвигаются вправо на один разряд по отношению к разрядам делимого. К полученной предыдущей разнице сносится очередная цифра делимого, и данный процесс повторяется до тех пор, пока не будет получена необходимая точность. Если учесть, что все вычитания в ЭВМ заменяются сложением в ОК или ДК (см. табл. 2.3), то действительно операция деления приводится к операциям сложения и сдвигам вправо разрядов делителя относительно разрядов делимого. Отметим, что делимое перед операцией деления должно быть приведено к 2n-разрядной сетке. Только в этом случае при делении на n-разрядный делитель получается n-разрядное частное.
Знак частного формируется также путем сложения знаковых разрядов делимого и делителя, как это делалось при умножении.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|