Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

С нулевой суммой и с ненулевой суммой.




Игры с нулевой суммой — особая

  А Б
А −1, 1 3, −3
Б 0, 0 −2, 2
Игра с нулевой суммой

разновидность игр с постоянной суммой, то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо — числа означают платежи игрокам — и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство. Многие изучаемые математиками игры, в том числе уже упоминавшаяся «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме — это делается введением фиктивного игрока, который «присваивает себе» излишек или восполняет недостаток средств.

Ещё игрой с отличной от нуля суммой является торговля, где каждый участник извлекает выгоду. Широко известным примером, где она уменьшается, является война.

Параллельные и последовательные. В параллельных играх игроки ходят одновременно, или, по крайней мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических, играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной, например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.

Различия в представлении параллельных и последовательных игр рассматривались выше. Первые обычно представляют в нормальной форме, а вторые — в экстенсивной.

С полной или неполной информацией игры с полной информацией. В такой игре участники знают все ходы, сделанные до текущего момента, равно как и возможные стратегии противников, что позволяет им в некоторой степени предсказать последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство изучаемых в математике игр — с неполной информацией. Например, вся «соль» Дилеммы заключённого или Сравнения монеток заключается в их неполноте.

В то же время есть интересные примеры игр с полной информацией: «Ультиматум», «Многоножка». Сюда же относятся шахматы, шашки, го, манкала и другие.

Часто понятие полной информации путают с похожим — совершенной информации. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.

Игры с бесконечным числом шагов. Игры в реальном мире или изучаемые в экономике игры, как правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множестврассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов.

Задача, которая обычно ставится в этом случае, состоит не в поиске оптимального решения, а в поиске хотя бы выигрышной стратегии. Используя аксиому выбора, можно доказать, что иногда даже для игр с полной информацией и двумя исходами — «выиграл» или «проиграл» — ни один из игроков не имеет такой стратегии. Существование выигрышных стратегий для некоторых особенным образом сконструированных игр имеет важную роль в дескриптивной теории множеств.

Дискретные и непрерывные игры. Большинство изучаемых игр дискретны: в них конечное число игроков, ходов, событий, исходов и т. п. Однако эти составляющие могут быть расширены на множество вещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой (обычно — шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры также рассматриваются в теории оптимизации, находят своё применение в технике и технологиях, физике.

Метаигры. Это игры, результатом которых является набор правил для другой игры (называемой целевой или игрой-объектом). Цель метаигр — увеличить полезность выдаваемого набора правил. Теория метаигр связана с теорией оптимальных механизмов (англ.).

 

Стратегия

Казалось бы, что в игре в развернутой форме действия од­ного игрока ограничивают возможности другого. Это действительно верно в отношении ходов. Однако если мы правильно определим понятие стратегии, мы получим стратегическую независимости и, тем самым, игру в нормаль­ной форме. Что назвать стратегией для позиционной игры? Каждый игрок в каждой позиции, которой он управляет, должен указать некоторый ход. Та­ким образом, у него ’’много” стратегий. Если все игроки выбрали по стратегии, то из каждой (нетерминальной) вершины выходит указанный ход, и можно дви­гаться от корневой вершины по этим отобранным стрелкам. В конце концов мы доберемся до конечной (терминальной) вершины (если дерево конечно, что молчаливо предполагается), а там указаны выигрыши. Тем самым, по каждой позиционной игре можно канонически построить игру в нормальной форме. Однако мы сразу видим, что ни одну из форм 1, 2, 3 нельзя представить как позиционную игру. Почему? Дело в том, что в этих играх игроки делают ходы одновременно, и никто не знает, кто какой выбрал ход. А в позиционных порядок ходов четко определен, и второй игрок знает, что сделал первый.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...