Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Новые стратегии научного исследования и освоение саморазвивающихся синергетических систем.




Для анализа процессов эволюции сложных систем, в том числе исторически развивающихся и глобальных, нам необходимо обратиться к рассмотрению такого нового междисциплинарного направления исследований, которое получило название синергетики.

Автор самого термина «синергетика» (от греч. synergeticos — совместно действующий) немецкий физик Г. Хакен в предисловии к первому изданию своей книги писал: «Я назвал новую дисциплину «синергетикой» не только потому, что в ней исследуется совместное действие многих элементов систем, но и потому, что для нахождения общих принципов, управляющих самоорганизацией, необходимо кооперирование многих различных дисциплин».

Синергетику теперь стали рассматривать как парадигму исследования сложноорганизованных систем, которая находит широкое применение не только в естественных и технических науках, но все активнее вторгается в социально-экономическое и гуманитарное знание. Прогресс в познании сложных систем способствовал преодолению противопоставления простого и сложного, пониманию их относительности, а самое главное — раскрытию роли сложноорганизованных процессов в ходе эволюции и развития систем неорганического, органического и социального мира.

Синергетический анализ сложноорганизованных систем.

Важнейшим условием возникновения самоорганизации является наличие открытой системы, которое противоположно понятию закрытой системы классической термодинамики. Одно из первых определений этого понятия принадлежит выдающемуся австрийскому физику Э. Шредингеру, который сформулировал его в своей книге «Что такое жизнь с точки зрения физики?». В ней он подчеркнул, что характерная особенность биологических систем состоит в обмене энергией и веществом с окружающей средой. Средство, при помощи которого организм поддерживает себя постоянно на достаточно высоком уровне упорядоченности (равно на достаточно низком уровне энтропии), указывал он, в действительности состоит в непрерывном извлечении упорядоченности из окружающей его среды.

Взаимодействуя со средой, открытая система не может быть равновесной. С поступлением новой энергии или вещества неравновесность в системе возрастает. В конечном счете, прежняя взаимосвязь между элементами системы, которая определяет ее структуру, разрушается. Со временем между элементами системы возникают новые взаимосвязи и появляются кооперативные процессы, которые приводят к коллективному поведению элементов системы. Именно кооперативные процессы приводят к образованию новых динамических структур. Так схематически могут быть описаны процессы самоорганизации в открытых системах.

Основная идея, выдвигаемая синергетикой, заключается в том, что сложные системы качественно меняют свое макроскопическое состояние в результате изменений, происходящих на микроуровне.

Эти изменения недоступны для непосредственного наблюдения, но их совокупный результат доступен для наблюдения и описывается управляющими параметрами системы. При критическом значении этих параметров система переходит в новое макроскопическое состояние. Установить связь между невидимыми изменениями на микроуровне и видимыми изменениями на макроуровне, так же как и определить критические значения управляющих параметров из чисто абстрактных, теоретических соображений не представляется возможным. Поэтому здесь прибегают к конкретному исследованию сложноорганизованных систем с помощью наблюдений или экспериментов.

Анализ поведения системы при переходе от прежнего состояния к новому состоянию в критической точке имеет решающее значение для понимания процесса самоорганизации. Именно здесь ясно прослеживается взаимосвязь между случайностью и необходимостью в процессе самоорганизации системы. Флуктуации, представляющие собой случайные отклонения системы от равновесия в ходе взаимодействия со средой и возрастания неравновесности системы, посте­пенно усиливаются, пока не достигнут определенной критической точки, в которой и происходит превращение случайных изменений в детерминированное, необходимое движение системы. Однако какое направление дальнейшего движения или траекторию после критической точки «выберет» при этом система, зависит в свою очередь от ряда случайных обстоятельств. Используя знакомый нам термин бифуркации, можно сказать, что в зависимости от сложившихся случайных обстоятельств, система может «выбрать», по меньшей мере, две возможные траектории будущего движения. Предсказать, какой конкретно путь «выберет» система, невозможно.

Роль нелинейной динамики и синергетики в развитии современных представлений о развивающихся системах.

Отличительная черта моделей, описывающих открытые системы и процессы самоорганизации, состоит в том, что для их описания используются нелинейные математические уравнения, в которые входят переменные в степени выше первой (линейной). Классическая термодинамика изучала равновесные системы, для описания которых применялись линейные дифференциальные уравнения. Но такие системы не могли описывать развитие сложноорганизованных биологических и социальных систем. По этой причине возник конфликт между классической термодинамикой и эволюционной теорией Ч. Дарвина. Он был разрешен переходом термодинамики к изучению открытых нелинейных систем и появлением синергетики.

Появление нелинейной термодинамики и синергетики способствовало переходу от линейного мышления, которое утвердилось в рамках механистической картины мира к нелинейному мышлению современной науки. В отличие от классической линейной термодинамики, предметом изучения которой являются равновесные и слабо неравновесные системы, нелинейная термодинамика исследует сильно неравновесные системы, поведение которых является нестабильным и точно непредсказуемым. Но именно такие системы больше всего встречаются в живой природе и обществе и поэтому они представляют наибольший интерес для науки.

Среди этих систем особого внимания заслуживают самоорганизующиеся и исторически развивающиеся системы, к которым относятся геологические, астрономические, биологические, социально-экономические и другие системы. Трудность их исследования заключается в том, что процессы самоорганизации и перехода к новым качественным состояниям в них требуют не только прогнози­рования периодов неустойчивости и появления возможных точек бифуркации, но и конкретного анализа эволюции систем на всем протяжении исторического процесса развития. Поэтому анализ таких систем осуществляется как с помощью стандартных методов нелинейной термодинамики и синергетики, так и построения сценариев будущего их развития.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...