Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Перенос формулы с длинным подкоренным выражением, не умещающимся в формат набора

Такое выражение можно преобразовать, возведя в соответствующую степень подкоренное выражение.

(Приложение 6. Пример 3)

Здесь перенос также производят на знаке плюс многочлена.

 

2.8 Приемы обработки формул и текста с ними, позволяющие экономить площадь бумаги

Перевод выражений с горизонтальной дробной чертой в однострочные

Дробные выражения можно упростить частичной или полной заменой дробной черты на косую, а также введением десятичных дробей и отрицательных степеней.

(Приложение 7. Пример 1)

Указанные способы рекомендуется применять и при обозначении степеней, пределов интегрирования, подстрочных и надстрочных индексов.

(Приложение 7. Пример 2)

 

 

2.8.2 Запись с помощью обозначения ехр

Если показательная функция содержит длинный или громоздкий показатель, то такую функцию рекомендуется записать с помощью обозначения ехр и расположения ее показателя на строке с введением скобок.

(Приложение 7. Пример 3)

Свернутые формы записи математических выражений

Для экономии площади бумаги рекомендуется применять свернутые формы записи обозначений, матриц, определителей, систем линейных уравнений.

(Приложение 7. Пример 4)

(Приложение 7. Пример 5)

(Приложение 7. Пример 6)

Также следует применять замену однотипных формул, в которых величины изменяются по одному и тому же правилу, одним выражение.

(Приложение 7. Пример 7)

 

2.8.4 Формулы в подбор с текстом

Ряд несложных и ненумерованных формул располагают в подбор с текстом.

(Приложение 7. Пример 8)

Расположение формул в подбор одна к другой

Часто возникает необходимость выключить формулу отдельной строкой, но в результате математических действий из этой формулы получается другая, представляющая собой некий итог рассуждений. В таких случаях, если позволяет формат набора, можно поставить обе формулы рядом в строке, соединить их либо союзом или, либо математическими знаками <=> («равносильно»), => («следовательно»).

(Приложение 7. Пример 9)

В подобных случаях запись формул, входящих в систему уравнений, в виде столбца не является строго обязательной, если эти формулы умещаются в одну строку. При таком расположении формул достаточно в предшествующем тексте указать, что данный уравнения образуют систему.

Если же некоторая совокупность уравнений не составляет системы, будет ошибочно записывать ее столбцом и объединять парантезом. Такую совокупность уравнений необходимо записывать в одну строку.

(Приложение 7. Пример 10)

Аналогично следует отказаться от неоправданного расположения одной под другой нескольких однотипных нумерованных формул. Их так же следует поместить в одной строке под одним номером.

(Приложение 7. Пример 11)

 

Отказ от элементарных числовых выкладок

В научно-технической и учебной литературе для подготовленного читателя (старшие школьники, студенты и пр.) не следует приводить все промежуточные непринципиальные преобразования в формулах, в особенности элементарные по своему характеру. Следует давать только наиболее важные и характерные из таких преобразований.

(Приложение 7. Пример 12)

 

Замена громоздких выражений

часто над одним и тем же громоздким выражением производятся различные преобразования. Такое выражение целесообразно заменить каким-либо символом, дав предварительно расшифровку этого символа, и использовать это обозначение в последующих преобразованиях.

(Приложение 7. Пример 13)

 

Преобразование текста с целью компактного размещения формул

Нередко оказывается полезным такое изменение структуры текста, при котором ряд однотипных формул помещается в одной строке. Этот прием особенно эффективен при необходимости работы с системами уравнений, матрицами и определителями, которые занимают обычно значительную площадь в тексте.

(Приложение 7. Пример 14)

 

Перевод текста в таблицу

В тех случаях, когда математический текст носит вспомогательный, справочный характер, такой как тематический материал в задачнике или справочнике, следует перевести группу формул в более компактную и наглядную таблицу.

(Приложение 7. Пример 15)

 

 

Перенос ссылок на формулы из текста в формулы

Довольно часто ссылки на формулы из текста можно расположить над соответствующими знаками равенств в приведенной цепочке математических преобразований. Однако следует учитывать, что такая запись возможна лишь в текстах для подготовленного читателя.

(Приложение 7. Пример 16)

 

Использование современной символики

Для компактной записи текста большие возможности дает современная математическая символика, в которой наиболее часто употребительны знаки следования и равносильности, знаки принадлежности, знаки объединения и пересечения множеств, знаки квантора общности («для любого х») и квантора существования («существует такое х»), знаки параллельности и перпендикуляра.

(Приложение 7. Пример 17)

 

Разметка формул

Общие правила

Чтобы гарантировать правильный набор формул, их следует тщательно разметить:

1) обозначить корректурными знаками – черточками под и над буквами – прописные и строчные буквы, не различающиеся по начертанию;

2) обозначить под символами, индексами и математическими обозначениями, шрифтом какого начертания они должны быть набраны (прямой, курсив, полужирный);

3) обвести красным карандашом буквы греческого алфавита, синим – готического;

4) во всех сомнительных случаях пояснить на поле, какую букву или знак следует набрать (в т.ч. специальные математические знаки);

5) пояснить или прорисовать все смешиваемые в наборе знаки, цифры, буквы, такие как 0 (ноль) и О (буква),  (знак умножения) и х (икс), единица арабская и римская, штрих ' и показатель степени, равный единице 1 и т. д.;

6) разметить корректурными знаками положение верхних, нижних, одинарных и двойных индексов.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...