Особенности течения при турбулентном режиме
Для турбулентного движения характерно перемешивание жидкости, пульсации скоростей и давлений в процессе течения. Траектории частиц, проходящих через данную неподвижную точку пространства в разные моменты времени, представляют собой кривые линии различной формы несмотря на прямолинейность трубы. Характер линий тока в трубе в данный момент времени также отличается большим разнообразием. Таким образом, строго говоря, турбулентное течение является неустановившимся течением, т.к. величины скоростей и давлений, а также траектории частиц меняются по времени. Однако его можно рассматривать как установившееся при условии, что осредненные по времени значения давлений и скоростей, а также величина полного расхода потока не меняются с течением времени. Такое течение встречается довольно часто. Ввиду того, что при турбулентном течении отсутствует слоистость потока и происходит перемешивание жидкости, закон Ньютона в этом случае неприменим. Благодаря перемешиванию жидкости и непрерывному переносу количества движения в поперечном направлении, касательное напряжение на стенке трубы в турбулентном потоке значительно больше, чем в ламинарном. Распределение скоростей может быть выражено приближенной степенной формулой Альтшуля-Калицуна . При турбулентном режиме непосредственно на стенке трубы обычно имеется ламинарный слой. Это весьма тонкий слой жидкости, движение в котором является наиболее замедленным, слоистым и без перемешивания, т.е. ламинарным. Непосредственно за ламинарным слоем располагается тонкий слой жидкости, который представляет переходную зону от ламинарного к турбулентному режиму.
За переходной зоной лежит турбулентное ядро, в котором частицы перемещаются по сложным траекториям, вихреобразно (рис 35).
Рисунок 35 - Структура потока при турбулентном режиме
В пределах ламинарного слоя скорость круто нарастает от нуля на стенке до некоторой конечной величины на границе слоя. Этот участокназывается пограничным ламинарным слоем. Толщина ламинарного слоя 5 может быть выражена следующей зависимостью: . Интересно отметить, что число Рейнольдса, подсчитанное по толщине ламинарного слоя, скорости \л есть величина постоянная подобно критическому числу Рейнольдса: .
Уравнения Эйлера для движущейся среды.
Воспользуемся основным законом механики, а именно: Равнодействующая всех сил, действующих на данное тело, равна массе тела, умноженной на ускорение, с которым движется это тело. Полная сила инерции равна: I = - m(dV/dt). Будучи отнесенной к единице массы, полная сила инерции даст единичную силу инерции. Ее проекции на координатные оси будут равны: , , . Теперь необходимо внести эти составляющие в уравнения Эйлера дл гидростатики и получим уравнения всех единичных сил, действующих движущейся жидкости. Преобразуем уравнения Эйлера к следующему виду: а Или после преобразований а Эти уравнения носят название дифференциальных уравнений Эйлера для движущейся идеальной жидкости. Они устанавливают связь между проекциями объемных, массовых сил и скоростей, давлением и плотностью жидкости и являются основой для изучения некоторых вопросов гидродинамики. Уравнения не учитывают ни си л тре н ия, ни сил сцепления (вязкости), т.к. уравнения получены из уравнений статики, а в статических уравнениях данные величины не фигурируют.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|