Преобразование сходящейся системы сил
Равнодействующая R двух сходящихся сил находится на основании аксиомы о параллелограмме сил. (рис.1.9). Геометрическая сумма любого числа сходящихся сил может быть определена путем последовательного сложения двух сил (рис.1.19) – способ векторного многоугольника. Вывод: система сходящихся сил ( n) приводится к одной равнодействующей силе .
Рис.1.19 Рис.1.20. Рис.1.21.
Аналитически равнодействующая сила может быть определена через ее проекции на оси координат , (1.5) Согласно теореме: проекция равнодействующей на ось равна сумме проекций слагаемых сил на эту ось (рис.1.20). Rx = F1 x + F2 x + F3 x, или в общем виде R x = å Fkx (1.6) С учетом (1.6) равнодействующая определяется выражением , (1.7) Направление вектора равнодействующей определяется косинусами углов между вектором и осями x, y, z (рис.1.20) где
1.7.2. Преобразование произвольной системы сил. Применить правило параллелограмма сил непосредственно к произвольной системе сил нельзя, так как линии действия сил не пересекаются в одной точке. Предварительно систему сил приводят к одному центру на основании теоремы о параллельном переносе силы. Теорема: силу, приложенную к твердому телу, можно, не изменяя оказываемого ею действия, перенести параллельно в другую точку тела, прибавляя при этом пару сил с моментом, равным моменту переносимой силы относительно точки, в которую она переносится (рис.1.22). В результате указанного преобразования получается сходящаяся система сил и сумма моментов пар сил. Действие сходящейся системы сил заменяют действием суммарной силы, действие моментов - суммарным моментом. Суммарный вектор * называют главным вектором системы сил, суммарный момент * - главным моментом системы сил.
Рис.1.22 Вывод: произвольная система сил в результате тождественного преобразования приводится к главному вектору * и главному моменту * системы сил. Аналитически главный вектор и главный момент системы сил могут быть определены через их проекции на оси координат , (1.8) . (1.9) 1.8 Условия равновесия систем сил 1.8.1. Равновесие системы сходящихся сил По определению (см.п.1.1) действие системы сходящихся сил эквивалентно действию одной равнодействующей силы . Для равновесия тела необходимо и достаточно, чтобы равнодействующая равнялась нулю = 0. Из формулы (1.7) следует, что для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y,Z равнялась нулю å Fkx = 0 å Fky = 0 (1.10) å Fk z = 0
Для равновесия плоской сходящейся системы сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y равнялась нулю å Fkx = 0 å Fky = 0 (1.11)
Читайте также: Автоматическая коррекция нуля. Преобразование биполярных входных сигналов Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|