Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Преобразование сходящейся системы сил




Равнодействующая R двух сходящихся сил находится на основании аксиомы о параллелограмме сил. (рис.1.9). Геометрическая сумма любого числа сходящихся сил может быть определена путем последовательного сложения двух сил (рис.1.19) – способ векторного многоугольника.

Вывод: система сходящихся сил ( n) приводится к одной равнодействующей силе .

       
   
 
 

 

 


 

Рис.1.19 Рис.1.20. Рис.1.21.

 

Аналитически равнодействующая сила может быть определена через ее проекции на оси координат

, (1.5)

Согласно теореме: проекция равнодействующей на ось равна сумме проекций слагаемых сил на эту ось (рис.1.20). Rx = F1 x + F2 x + F3 x, или в общем виде R x = å Fkx (1.6)

С учетом (1.6) равнодействующая определяется выражением

, (1.7)

Направление вектора равнодействующей определяется косинусами углов между вектором и осями x, y, z (рис.1.20)

где

 

1.7.2. Преобразование произвольной системы сил.

Применить правило параллелограмма сил непосредственно к произвольной системе сил нельзя, так как линии действия сил не пересекаются в одной точке. Предварительно систему сил приводят к одному центру на основании теоремы о параллельном переносе силы.

Теорема: силу, приложенную к твердому телу, можно, не изменяя оказываемого ею действия, перенести параллельно в другую точку тела, прибавляя при этом пару сил с моментом, равным моменту переносимой силы относительно точки, в которую она переносится (рис.1.22).

В результате указанного преобразования получается сходящаяся система сил и сумма моментов пар сил. Действие сходящейся системы сил заменяют действием суммарной силы, действие моментов - суммарным моментом. Суммарный вектор * называют главным вектором системы сил, суммарный момент * - главным моментом системы сил.

 

Рис.1.22

Вывод: произвольная система сил в результате тождественного преобразования приводится к главному вектору * и главному моменту * системы сил.

Аналитически главный вектор и главный момент системы сил могут быть определены через их проекции на оси координат

, (1.8)

. (1.9)

1.8 Условия равновесия систем сил

1.8.1. Равновесие системы сходящихся сил

По определению (см.п.1.1) действие системы сходящихся сил эквивалентно действию одной равнодействующей силы . Для равновесия тела необходимо и достаточно, чтобы равнодействующая равнялась нулю = 0.

Из формулы (1.7) следует, что для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y,Z равнялась нулю

å Fkx = 0

å Fky = 0 (1.10) å Fk z = 0

 

Для равновесия плоской сходящейся системы сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y равнялась нулю

å Fkx = 0

å Fky = 0 (1.11)

 

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...