Плоско - параллельное движение твердого тела
Плоско- параллельным называется движение твердого тела, при котором все его точки перемещаются в плоскостях, параллельных одной неподвижной плоскости (рис.2.10). Для изучения движения тела достаточно изучить движение одного сечения S этого тела плоскостью, параллельной неподвижной плоскости. Движение сечения S в своей плоскости можно рассматривать как сложное, состоящее из двух элементарных движений: а) поступательного и вращательного; б) вращательного относительно подвижного (мгновенного) центра. В первом варианте движение сечения может быть задано уравнениями движения одной его точки (полюса) и вращением сечения вокруг полюса (рис.2.11). В качестве полюса может быть принята любая точка сечения.
Рис. 2.10 Рис. 2.11
Уравнения движения запишутся в виде:
Х А = ХА (t) YА = YА (t) (2.14) jА = jА (t) Кинематические характеристики полюса определяют из уравнений его движения. Скорость любой точки плоской фигуры, движущейся в своей плоскости слагается из скорости полюса (произвольно выбранной в сечении точки А) и скорости вращательного движения вокруг полюса (вращение точки В вокруг точки А). Ускорение точки движущейся плоской фигуры складывается из ускорения полюса относительно неподвижной системы отсчета и ускорения за счет вращательного движения вокруг полюса. (2.15) (2.16) Во втором варианте движение сечения рассматривается как вращательное вокруг подвижного (мгновенного) центра P (рис.1.12). В этом случае скорость любой точки В сечения будет определяться по формуле
для вращательного движения (2.17) Угловая скорость вокруг мгновенного центра Р может быть определена если известна скорость какой либо точки сечения, например точки А.
(2.18)
Рис.2.12 Положение мгновенного центра вращения может быть определено на основании следующих свойств: - вектор скорости точки перпендикулярен радиусу; - модуль скорости точки пропорционален расстоянию от точки до центра вращения (V= w ∙R); - скорость в центре вращения равна нулю.
Рассмотрим некоторые случаи определения положения мгновенного центра. 1. Известны направления скоростей двух точек плоской фигуры (рис.2.13). Проведем линии радиусов. Мгновенный центр вращения Р находится на пересечении перпендикуляров, проведенных к векторам скоростей. 2. Скорости точек А и В известны, причем вектора и параллельны друг другу, а линия АВ перпендикулярна (рис. 2. 14). В этом случае мгновенный центр вращения лежит на линии АВ. Для его нахождения проведем линию пропорциональности скоростей на основании зависимости V= wR. 3. Тело катится без скольжения по неподвижной поверхности другого тела (рис.2.15). Точка касания тел в данный момент имеет нулевую скорость в то время, как скорости других точек тела не равны нулю. Точка касания Р будет мгновенным центром вращения. Рис. 2.13 Рис. 2.14 Рис. 2.15
Кроме рассмотренных вариантов скорость точки сечения может быть определена на основании теоремы о проекциях скоростей двух точек твердого тела. Теорема: проекции скоростей двух точек твердого тела на прямую, проведенную через эти точки, равны между собой и одинаково направлены. Доказательство: расстояние АВ изменяться не может, следовательно, V А cosa не может быть больше или меньше V В cosb (рис.2.16).
Рис. 2.16 Вывод: VА cosa = VВ cosb. (2.19)
Читайте также: A- выдвижение кончика языка к верхней губе Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|