Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Электронная ионизация (EI)

 

 

Электронная ионизация – один из наиболее важных способов ионизации для повседневных анализов малых гидрофобных термически стабильных молекул и до сих пор широко используется. Так как EI обычно даёт большое число фрагментарных ионов, это «жёсткий» способ ионизации. Однако, фрагментарная информация также может быть очень полезной. Например, используя базы данных, содержащие свыше 200000 масс-спектров электронной ионизации, возможно определить неизвестное соединение в течение нескольких секунд (конечно, если оно есть в базе данных). Эти базы данных, а также объём памяти и поисковые алгоритмы современных компьютеров позволяет быстро просматривать такие базы (как, например, база NIST), таким образом значительно облегчая идентификацию малых молекул.

Устройство электронной ионизации прямолинейно (рис. 1.18). Образец должен поставляться в газообразной форме, что осуществляется «выкипанием» образца посредством термической десорбции или введением газа через капилляр. Капилляр часто является выходом капиллярной колонки прибора газовой хроматографии. В этом случае капиллярная колонка обеспечивает разделение (это также известно как газовая хромат-масс-спектрометрия – GC/MS). Десорбция твердых или жидких образцов производится нагреванием в вакууме масс-спектрометра. После перехода в газовую фазу соединения переносятся в устройство электронной ионизации, где электроны возбуждают молекулу, тем самым вызывая ионизацию отрывом электрона и фрагментацию.

Применимость электронной ионизации значительно уменьшается для соединений с молекулярной массой свыше 400 дальтон, потому что необходимая термическая десорбция образца ведёт к температурному разложению до того, как происходит испарение. Принципиальными проблемами, связанными с термической десорбцией при электронной ионизации являются 1) нелетучесть больших молекул, 2) термическое разложение, 3) избыточная фрагментация.

Механизм отрыва электрона при образовании положительного иона осуществляется следующим образом:

· Образец термически испаряется.

· Электроны испускаются нагретым катодом и ускоряются электрическим полем с разностью потенциалов в 70 В, чтобы образовать непрерывный пучок электронов.

· Молекулы образца проходят через пучок электронов.

·

 

Электроны с кинетической энергией 70 эВ передают часть своей энергии молекулам. Эта передача вызывают ионизацию (отрыв электрона) так, что ион сохраняет обычно не более 6 эВ избыточной энергии.

·

 

Избыток внутренней энергии (6 эВ) в молекуле ведёт к некоторой

 

фрагментации.

Электронный захват обычно намного менее эффективен, чем отрыв электрона, хотя иногда используется таким же способом, с высокой чувствительностью работая для соединений с большим сродством к электрону: M + e- → M-. [1]

Химическая ионизация (CI)

 

Химическая ионизация (CI) применяется к образцам, сходным с анализируемыми при помощи EI, и обычно применяется, чтобы увеличить долю молекулярного иона. Химическая ионизация использует газофазные ионно-молекулярные реакции в вакууме масс-спектрометра для получения ионов из молекул образца. Процесс химической ионизации инициируется газом-реагентом, таким, как метан, изобутан или аммиак, который ионизируется электронным ударом. Высокое давление газа в устройстве ионизации приводит к ионно-молекулярным реакциям между ионами газа-реагента и его нейтральными молекулами. Некоторые продукты ионно-молекулярных реакций могут реагировать с аналитом с образованием ионов.

Возможные механизмы ионизации при CI:

Реагент (R) + e- → R+ + 2 e-

R+ + RH → RH+ + R

RH+ + Аналит (A) → AH+ + R

В отличие от EI, аналит с большей вероятностью образует молекулярный ион с меньшей фрагментацией при использовании CI. Однако, аналогично EI, образцы должны быть термически стабильными, так как испарение в CI-устройстве осуществляется при помощи нагревания.

Отрицательная химическая ионизация (NCI) обычно требует от аналита содержания остатков (например, атомов фтора или нитробензильных групп). Некоторые функциональные группы значительно увеличивают чувствительность NCI, в некоторых случаях от 100 до 1000 раз по сравнению с электронной ионизацией (EI). NCI, возможно, – один из самых чувствительных способов и применяется ко большому разнообразию низкомолекулярных соединений с единственным ограничением, что молекулы часто химически модифицируются с добавлением групп, отвечающих за захват электрона.


 

Хотя большинство соединение не образует отрицательных ионов при использовании EI или CI, многие важные соединения могут давать отрицательные ионы, и, в некоторых случаях, отрицательная EI или CI масс-спектрометрия является более чувствительной и избирательной, нежели анализ положительных ионов. Например, такие соединения, как стероиды модифицируются (рис. 1.19), чтобы усилить NCI.

Как было отмечено, отрицательные ионы могут быть получены при электронном захвате, и при отрицательной химической ионизации буферный газ (такой как метан) может замедлить электроны в электронном пучке, позволяя им быть захваченными молекулами аналита. Буферный газ также стабилизирует возбуждённые анионы и уменьшает фрагментацию. Поэтому NCI, в сущности, есть процесс электронного захвата, а не то, что обычно подразумевается под процессом «химической ионизации». [1]

Таблица 1.5. Сравнение основных характеристик способов ионизации.

 

Способ ионизации Обычный диапазон масс (Da) Влияние матрицы Разложение Сложные смеси Совместимость с ЖХ Чувствительность
Ионизация электроспрея (ESI) 70000 Нет Нет Несколько ограничено Превосходно От многих фемтомоль до нескольких пикомоль
Комментарии

Превосходно для совмещения ЖХ и МС; устойчивость к небольшим концентрация солей (до нескольких мМ); многократная зарядка полезна, но значительно подавлена в случае смесей; низкая устойчивость к смесям; мягкая ионизация (наблюдается мало фрагментов).

NanoESI 70000 Нет Нет Несколько ограничено, но лучше, чем ESI Возможно, но обеспечение низкой скорости потока может составить проблему От многих зептомоль до нескольких фемтомоль
Комментарии

Очень чувствителен и очень малые скорости потока; применим для ЖХ/МС, но малые скорости потока требуют специальных систем; умеренная устойчивость к солям (до нескольких мМ); многократная зарядка полезна, но может быть подавлена в случае смесей; умеренно применим для смесей; мягкая ионизация (наблюдается мало фрагментов).

APCI 1200 Нет Термическое разложение Несколько применимо Превосходно Многие фемтомоли
Комментарии

Превосходно для совмещения ЖХ и МС; малая устойчивость к солям (до нескольких мМ); применимо к гидрофобным образцами

APPI 1200 Нет Фотодиссоциация Применимо Превосходно Многие фемтомоли
Комментарии

Превосходно для совмещения ЖХ и МС; малая устойчивость к солям (до нескольких мМ); применимо к гидрофобным образцами

MALDI 300000 Есть Фоторазложение и реакции с матрицей Хорошо для сложных смесей Возможно От нескольких до многих фемтомолей
Комментарии

Несколько устойчиво к солям; превосходная чувствительность; фон матрицы может быть проблемой для ионов с малой массой; мягкая ионизация (наблюдается мало фрагментов); возможно фоторазложение; применимо к сложным смесям. Многократная зарядка весьма ограничена, так что данные не соотносятся с некоторыми другими способами.

DIOS 3000 Нет Фоторазложение Хорошо для сложных смесей Возможно От нескольких фемтомоль до многих иоктомоль
Комментарии

Несколько устойчиво к солям; отличная чувствительность; мягкая ионизация; фоторазложение возможно; применимо к сложным смесям и низкомолекулярным соединениям

FAB 7000 Есть Реакции с матрицей и некоторое термическое разложение Несколько применимо Очень ограничено Наномоль
Комментарии

Относительно слабочувствителен; малая фрагментация; мягкая ионизация; высокая устойчивость к солям – до 0,01 М; необходима растворимость в матрице

Электронная ионизация (EI) 500 Нет Термическое разложение Ограничено, если не используется ГХ/МС Очень ограничено Пикомоль
Комментарии

Хорошая чувствительность; уникальные данные по фрагментации с возможностью просмотра по базам данных; термическое разложение – основная проблема для биомолекул и других высокомолекулярных соединений

Химическая ионизация (CI) 500 Нет Термическое разложение Ограничено, если не используется ГХ/МС Очень ограничено Пикомоль
Комментарии

Более мягкий подход к ионизации по сравнению с EI, но всё равно с термическим разложением; отрицательная CI особенно чувствителен к перфторированным производным; ограниченный, но мощный подход к некоторым модифицированным молекулам, таким как стероиды.

Анализаторы масс

 

Когда устройства ионизации смогли испарять и ионизировать биомолекулы, стало необходимо улучшить анализаторы масс до соответствующей скорости, точности и разрешения (рис. 2.1). Точнее, квадрупольные, квадрупольная ионная ловушка, времяпролётные (TOF), времяпролётные рефлекторные и циклотронные резонанса ионов анализаторы масс претерпели множественные модификации/улучшения за последние десять лет, чтобы соответствовать уровню MALDI и ESI. Сложнейшей проблемой оказалось совмещение устройств ионизации при атмосферном давлении (760 Торр) и анализаторов, в которых поддерживается 10-6 – 10-11 Торр, то есть, разница в давлении на 9 и более порядков. [10]

Анализ масс

 

Аналитические приборы обычно различаются в своих способностях в зависимости от индивидуального устройства и предназначения. Это верно и для масс-спектрометров. Хотя все масс-спектрометры содержат анализаторы масс, не все анализаторы работают одинаковым образом: некоторые разделяют ионы в пространстве, другие разделяют их по времени. В общих словах, масс-анализатор различает ионы в газовой фазе по их отношению массы к заряду (m / z), причём заряд может быть обусловлен присоединением или потерей протона(ов), катиона(ов), аниона(ов) или электрона(ов). Появление заряда заставляет молекулу подвергаться действию электрических полей, тем самым позволяя измерить её массу. Важно помнить, что анализаторы масс измеряют отношение m / z, а не массу. Часто это является камнем преткновения, так как ион оказывается многократно заряженным и m / z становится значительно меньше действительной массы (рис. 1.8 и 1.9). Например, дважды заряженный пептид массой 976.5 Да C37H68N16O142+ имеет m / z 488.3.


Многократная зарядка особенно характерна для ионизации электроспрея, давая многочисленные пики, относящиеся к одному образцу, но наблюдаемые при разных m / z.

Первые анализаторы масс, сделанные ещё в ранние 1900-е, использовали магнитное поле для разделения ионов по радиусу кривой, описываемой ими при прохождении через поле. Устройство современных анализаторов значительно изменилось в последние пять лет, сейчас обеспечивая намного большую точность, увеличенную чувствительность, более широкий диапазон масс и способность давать структурную информацию. Так как способы ионизации эволюционировали, анализаторы масс были вынуждены улучшиться на порядки, чтобы удовлетворить требованиям анализа большого разнообразия биомолекулярных ионов с точностью до одной миллионной и субфемтомольной чувствительностью. [11]

Таблица 2.1. Краткий обзор принципов работы анализаторов.
Анализатор масс Принцип работы
Квадрупольный Сканирование по частотам электромагнитного излучения
Квадрупольная ионная ловушка Сканирование по частотам электромагнитного излучения
Времяпролётный (TOF) Время пролёт прямо связано с m / z иона
Времяпролётный рефлектрон Время пролёт прямо связано с m / z иона
Квадрупольный-TOF Сканирование по частотам электромагнитного излучения и определение времени полёта
Магнитный сектор Магнитное поле влияет на радиус траектории иона
Фурье-резонансный ионный циклотронный MS Переводит движение иона в циклотроне в m / z (FTMS)

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...