Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Несобственные интегралы первого рода (по бесконечному промежутку).




Определение: Пусть функция непрерывна на промежутке , тогда очевидно, что при любом имеет смысл интеграл . Будем расширять промежуток , увеличивая . Тогда, если существует предел:

, то этот предел называется несобственным интегралом от функции по бесконечному промежутку и обозначается .

Отметим, что если указанный предел существует и конечен, то интеграл называется сходящимся (говорят, что он сходится). В противном случае (если предел бесконечен или не существует) говорят, что расходится.

Аналогично вводится понятие несобственного интеграла по промежутку .

Определение: Несобственный интеграл определяется как следующая сумма несобственных интегралов:

= + .

Отметим, что легко показать, что так определенный интеграл не зависит от выбора точки . Этот интеграл называется сходящимся, если сходящимися являются интегралы и , в противном случае он называется расходящимся.

Примеры:

1. Вычислить несобственный интеграл или доказать его расходимость:

а) = = = =

= = =

б) = = = = (интеграл расходится)

в) = = = Поскольку последний предел не существует, то интеграл расходится.

 

Несобственные интегралы второго рода (от неограниченных функций).

 

Предположим теперь, что функция непрерывна на , за исключением точки , в которой она терпит разрыв второго рода, и рассмотрим три случая:

а) .

Возьмем произвольное, но достаточно малое (чтобы выполнялось неравенство ) положительное и положим, по определению, = Если указанный предел существует, то называется несобственным интегралом второго рода по промежутку .

б) .

Как и в предыдущем случае определим несобственный интеграл , положив:

= .

Отметим, что вся терминология, связанная с определением сходимости и расходимости несобственных интегралов второго рода полностью переносится с соответствующих определений, данных для интегралов первого рода.

в)

В этом случае полагаем:

= +

При этом будем считать, что последний несобственный интеграл сходится, если сходятся слагаемые, определяющие этот интеграл. Ясно, что,

= + .

Пример.

= = = =

=

 

Признаки сходимости несобственных интегралов.

Теорема (признак сравнения).

Если на промежутке непрерывные функции и удовлетворяют условию для , то из сходимости интеграла следует сходимость интеграла , а из расходимости следует расходимость .

Доказательство. Предположим, что интеграл сходится и равен , тогда для любого будет выполняться неравенство: и, следовательно, будут выполняться неравенства: . Если теперь на интеграл смотреть как на функцию от , то эта функция будет монотонно возрастающей на бесконечном промежутке и ограниченной на этом промежутке. Следовательно, она имеет конечный предел: , то есть интеграл сходится.

Если теперь интеграл расходится, то возрастающая функция стремится к при . Но тогда, тем более, будет стремиться к и функция , так как . То есть интеграл будет расходиться.

Теорема (предельный признак сравнения).

Если на промежутке функции и непрерывны и неотрицательны, а предел их , где - число, не равное нулю, то оба несобственных интеграла и либо сходятся, либо расходятся одновременно.

Мы не будем приводить доказательство этой теоремы, а укажем только направление рассуждений для организации доказательства.

Указание. Если выбрать настолько малым, чтобы окрестность не содержала , то для «больших» будет выполняться неравенство , или и остается воспользоваться первым признаком сравнения.

 

Теорема.

Если функция непрерывна на промежутке и интеграл сходится, то сходится и интеграл .

Доказательство: Рассмотрим две функции:

и .

(заметим, что функция совпадает с функцией в тех точках, где последняя положительна, и равна нулю в остальных точках, а функция совпадает с функцией в тех точках, где она отрицательна, и равна нулю в остальных точках).

Очевидно, что . Воспользовавшись теоремой сравнения (в нашем случае и ), можно утверждать, что интегралы и , а значит и сходятся. Но тогда будет сходиться и интеграл , поскольку для него справедливо равенство:

= +

Проверка последнего равенства осуществляется заменой интегралов по бесконечному промежутку соответствующими пределами.

Отметим, что если вместе с интегралом сходится и интеграл , то интеграл называется абсолютно сходящимся, в противном случае (если сходится только интеграл ) он называется условно сходящимся.

Аналогичные теоремы можно сформулировать как для несобственных интегралов первого рода по промежуткам и , так и для несобственных интегралов второго рода.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...