Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Оценка качества САР по каналу управляющего воздействия

 

По переходным характеристикам, полученным в пунктах 1.3-1.5 определим следующие показатели качества:

ymax1 – амплитуда первого максимума;

ymax2 – амплитуда второго максимума;

yуст – установившееся значение;

σ – перерегулирование;

ε – статическое отклонение.

tp – время регулирования;

tn – время нарастания;

tmax – время достижения первого максимума;

æ – декремент затухания;

T – период колебаний;

ω – частота колебаний;

n – колебательность;

 

Таблица 1 – Показатели качества САР по каналу управляющего воздействия

Регуляторы ymax1 ymax2 yуст σ ε tp tn tmax æ T ω n
П 1.14 0.895 0.854 33.6 0.146 41.7 5.23 12.3 6.98 24.7 0.25 1.5
ПИ 1.31 1.04 1 31 0 62.3 8.11 19.4 7.75 35.9 0.175 1.5
ПИД 1.33 1.05 1 32.6 0 50.3 6.33 14.3 6.6 29.7 0.21 1.5

Декремент затухания и частоту колебаний определяем по формулам

 

æ  
 

 

Проанализировав полученные данные, можно сделать вывод, что каждая САР обладает своим рядом преимуществ и недостатков. САР с П-регулятором имеет наименьшее отклонение по амплитуде, но обладает статической ошибкой. У САР с ПИ-регулятором нет статической ошибки, но она имеет наибольшее время регулирования. САР с ПИД-регулятором наиболее быстродействующая, но она также обладает и наибольшим перерегулированием.

 

Оценка качества САР по каналу возмущающего воздействия

 

Для оценки качества САР по каналу возмущающего воздействия преобразуем структурную схему САР (рисунок 8).

 

Рисунок 8 – Структурная схема преобразованной САР

 

Определим передаточную функцию САР по возмущающему каналу:

 

Script 10:

>> Fiz1=feedback(Wop,Wap1)

Transfer function:

0.9 s^2 + 7 s + 2.2

-------------------------------------

336 s^3 + 148.4 s^2 + 39.64 s + 6.859

>> Fiz2=feedback(Wop,Wap2)

Transfer function:

0.9 s^3 + 7 s^2 + 2.2 s

--------------------------------------------------

336 s^4 + 147.1 s^3 + 29.56 s^2 + 4.348 s + 0.2156

>> Fiz3=feedback(Wop,Wap3)

Transfer function:

0.9 s^3 + 7 s^2 + 2.2 s

-----------------------------------------------

337.8 s^4 + 162.1 s^3 + 40 s^2 + 6.77 s + 0.396

 

Рисунок 8 – Переходные характеристики САР по каналу возмущающего воздействия


Таблица 2 – Показатели качества САР по каналу возмущающего воздействия

Регуляторы ymax1 ymax2 yуст σ ε tp tn tmax æ T ω n
П 0.429 0.336 0.321 33.6 0.321 41.7 5.23 12.3 0.86 24.6 0.26 1.5
ПИ 0.598 0.061 0 ¥ 0 73.5 0 14.3 0.898 37.7 0.167 2
ПИД 0.39 0.04 0 ¥ 0 49 0 14 0.897 30 0.21 1.5

 

Проанализировав полученные данные, можно сделать вывод, что по каналу возмущающего воздействия САР с П-регулятором имеет наименьшее отклонение по амплитуде, но обладает статической ошибкой. У САР с ПИ-регулятором нет статической ошибки, но она имеет наибольшее время регулирования. САР с ПИД-регулятором наиболее быстродействующая.

 

Оценка запаса устойчивости САР

 

Для оценки запаса устойчивости применим логарифмический критерий. При проектировании САР рекомендуемый запас устойчивости по амплитуде ∆L>6 Дб, по фазе ∆φ>300.

Script 11:

 

>> [Gm1,Pm1]=margin(W1);

>> [Gm2,Pm2]=margin(W2);

>> [Gm3,Pm3]=margin(W3);

>> [20*log10(Gm1),Pm1]

ans =

Inf 41.6235

>> [20*log10(Gm2),Pm2]

ans =

Inf 36.7183

>> [20*log10(Gm3),Pm3]

ans =

Inf 36.0532

 

Таблица 3 – Запас устойчивости САР

Регуляторы ∆L ∆φ
П ¥ 41.6
ПИ ¥ 36.7
ПИД ¥ 36.1

 

Проанализировав полученные данные, можно сделать вывод, что необходимым запасом устойчивости и по амплитуде, и по фазе обладают все САР.

Оценка управляемости и наблюдаемости линейной САР

 

Анализ САР с П-регулятором

 

Разработка математической модели типа «вход-состояние-выход»

 

Основная передаточная функция САР с П-регулятором была получена в п. 1.3. Она имеет вид:

 

,

где ,

 

Порядок характеристического полинома . Для данной САР выбираем вторую управляемую форму или управляемое каноническое представление (УКП). Математическая модель САР описывается следующей системой векторно-матричных уравнений:

 

 

где

 

Script 12:

>> b2=2.397;b1=18.64;b0=5.859;

>> a3=336;a2=148.4;a1=39.64;a0=6.859;

>> A1=[0 1 0;0 0 1;-a0/a3 -a1/a3 -a2/a3];

>> B1=[0;0;1];

>> C1=[b0/a3 b1/a3 b2/a3];

>> D1=0;

>> sys1=ss(A1,B1,C1,D1)

a =

x1 x2 x3

x1 0 1 0

x2 0 0 1

x3 -0.02041 -0.118 -0.4417

b =

u1

x1 0

x2 0

x3 1

c =

x1 x2 x3

y1 0.01744 0.05548 0.007134

d =

u1

y1 0

Continuous-time model.

>> step(sys1);grid


Рисунок 9 – Переходная характеристика САР с П-регулятором

 

При исользовании модели «вход-выход» и модели «вход-состояние-выход» были получены абсолютно идентичные переходные характеристики (рисунки 4 и 9), следовательно, модель «вход-состояние-выход» для САР с П-регулятором рассчитана, верно.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...