Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Исследование функции по общей схеме.




1. Область определения функции f (x) полностью может быть указана после исследования функции на непрерывность.

2. Непрерывность и точки разрыва функции f (x) исследуются по схеме:

> iscont(f, x=-infinity..infinity);

> d1:=discont(f,x);

> d2:=singular(f,x);

В результате наборам переменным d1 и d2 будут присвоены значения x -координат в точках разрыва 1 и 2-го родов (если они будут найдены).

3. Асимптоты. Точки бесконечных разрывов определяют вертикальные асимптоты графика f (x). Уравнение вертикальной асимптоты имеет вид:

> yr:=d2;

Поведение функции f (x) на бесконечности характеризуется наклонными асимптотами (если они есть). Уравнение наклонной асимптоты y=kx+b, где коэффициенты вычисляются по формулам:

и .

Аналогичные формулы для . Поэтому нахождение наклонных асимптот можно провести по следующей схеме:

> k1:=limit(f(x)/x, x=+infinity);

> b1:=limit(f(x)-k1*x, x=+infinity);

> k2:=limit(f(x)/x, x=-infinity);

> b2:=limit(f(x)-k2*x, x=-infinity);

Часто оказывается, что k1=k2 и b1=b2, в этом случае будет одна асимптота при и при . С учетом этого составляется уравнение асимптоты

> yn:=k1*x+b1;

4. Экстремумы. Исследование функции f (x) на экстремумы можно проводить по схеме:

> extrema(f(x), {}, x, ’s’);

> s;

> fmax:=maximize(f(x), x);

> fmin:=minimize(f(x), x);

После выполнения этих команд будут найдены координаты (x, y) всех максимумов и минимумов функции f (x).

Построение графика.

Построение графика функции f (x)– это окончательный этап исследования функции. На рисунке помимо графика исследуемой функции f (x) должны быть нанесены все ее асимптоты пунктирными линиями, подписаны координаты точек max и min. Приемы построения графиков нескольких функций и нанесения надписей были рассмотрены в теме III.

 

Задание 3.3.

1. Провести полное исследование функции по общей схеме. Сначала перейдите в текстовый режим и наберите “Исследование функции: “. Затем вернитесь в режим командной строки и наберите команды:

> f:=x^4/(1+x)^3:

В текстовом режиме наберите “Непрерывность функции”. В режиме командной строки и наберите:

> readlib(iscont): readlib(discont):

readlib(singular):

> iscont(f, x=-infinity..infinity);

false

Это означает, что функция не является непрерывной. Перейдите в текстовый режим и наберите “Нахождение точек разрыва”. Вернитесь в режим командной строки и наберите:

> discont(f,x);

{-1}

Конвертировать полученное значение точки разрыва типа set в число можно командой convert, добавив вторую опцию, например, `+`. Обратите внимание на обратные кавычки, которые набираются клавишей, расположенной выше клавиши табуляции.

> xr:=convert(%,`+`);

xr:= -1

Перейдите в текстовый режим и наберите: “Получена точка бесконечного разрыва x =-1”. С новой строки наберите: “Нахождение асимптот.”. Перейдите на новую строку и наберите “Уравнение вертикальной асимптоты: x =-1” (это можно сделать, поскольку вертикальные асимптоты возникают в точках бесконечного разрыва). С новой строки наберите: “Коэффициенты наклонной асимптоты:”. Перейдите в режим командной строки и наберите:

> k1:=limit(f/x, x=+infinity);

k1:=1

> b1:=limit(f-k1*x, x=+infinity);

b1:= -3

> k2:=limit(f/x, x=-infinity);

k2:=1

> b2:=limit(f-k2*x, x=-infinity);

b2:= -3

В этом случае коэффициенты наклонных асимптот при и оказались одинаковыми. Поэтому перейдите в текстовый режим и наберите “Уравнение наклонной асимптоты:”. Затем в новой строке прейдите в режим командной строки и наберите:

> y=k1*x+b1;

В текстовом режиме наберите “Нахождение экстремумов”. В новой строке наберите команды:

> readlib(extrema): readlib(maximize):

readlib(minimize):

> extrema(f,{},x,'s');s;

{ , 0}

{{ x = -4},{ x =0}}

Поскольку функция имеет разрыв, то при поиске максимума и минимума следует указать интервал, в который не должна входить точка разрыва.

> fmax:=maximize(f,{x},{x=-infinity..-2});

> fmin:=minimize(f,{x},{x=-1/2..infinity});

В текстовом режиме наберите результат исследования в виде:

“Максимум в точке (-4, -256/27); минимум в точке (0, 0).”

2. Построить график функции и ее асимптоту, указать координаты точек экстремума. Оформление каждого этапа исследования функции проделать также как и при выполнении предыдущего задания. Самостоятельно загрузите из стандартной библиотеки все необходимые команды.

> restart: y:=arctan(x^2):

> iscont(y, x=-infinity..infinity);

true

> k1:=limit(y/x, x=-infinity);

k1:=0

> k2:=limit(y/x, x=+infinity);

k2:=0

> b1:=limit(y-k1*x, x=-infinity);

> b2:=limit(y-k1*x, x=+infinity);

> yh:=b1;

> extrema(y,{},x,'s');s;

{0}

{{ x =0}}

> ymax:=maximize(y,{x}); ymin:=minimize(y,{x});

> with(plots): yy:=convert(y,string):

> p1:=plot(y,x=-5..5, linestyle=1, thickness=3,

color=BLACK):

> p2:=plot(yh,x=-5..5, linestyle=1,thickness=1):

> t1:=textplot([0.2,1.7,"Асимптота:"],

font=[TIMES, BOLD, 10], align=RIGHT):

> t2:=textplot([3.1,1.7,"y=Pi/2"],

font=[TIMES, ITALIC, 10], align=RIGHT):

> t3:=textplot([0.1,-0.2,"min:(0,0)"],

align=RIGHT):

> t4:=textplot([2,1,yy], font=[TIMES, ITALIC,

10], align=RIGHT):

> display([p1,p2,t1,t2,t3,t4]);

 

 

§4. Интегрирование

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...