Описание модели железнодорожной сети
Введение
По причине увеличения транспортных потоков в железнодорожной сети актуальной является проблема их рациональной организации. Однако с учетом влияния различных факторов, таких как загруженность участка дороги, состояния дороги, наличия внутренних потоков, данная задача не может быть решена с помощью аналитических моделей, основанных на графовых моделях. Поэтому актуальна разработка компьютерных моделей, позволяющих учесть все перечисленные случайные факторы, и рационально организовать потоки в железнодорожной сети. Для реализации курсовой работы необходимо решить следующие частные задачи: актуальность использования имитационной модели для исследования потоков транспортной сети; составление списков входных и выходных параметров имитационной модели железнодорожной транспортной сети; разработка и реализация алгоритма имитационной модели; решение тестовых задач с помощью имитационной. В первой главе представлены: теоретический материал для разработки имитационной модели железнодорожной сети, ее актуальность, алгоритм Форда-Фалкерсона, метод Монте-Карло. Во второй главе представлены формализация имитационной модель, описание водных и выходных значений, блок-схема алгоритма, тестирование модели и в приложении листинг программы. Имитационное моделирование для рациональной организации транспортных потоков
Актуальность использования имитационной модели для исследования потоков в железнодорожной сети
В наше время за счёт резкого увеличения числа транспортных средств в сетях дорог существенно возросли требования к рациональной организации транспортных потоков. Сама сеть дорог может быть представлена в виде графа, состоящего из узлов и дуг. Каждое ребро графа, соответствующее участку дороги, характеризуется длиной, пропускной способностью и стоимостью проезда по нему единицы транспортного средства. На пропускную способность ветви графа влияет скорость передвижения единицы транспорта, которая в свою очередь зависит от многих факторов, среди которых наиболее важными являются загруженность участков пути, состояние дорожного покрытия, условия внешней среды. Загруженность на различных участках дороги бывает различной и зависит от наличия внутренних транспортных потоков на данном участке, которые могут рассматриваться как помехи при передвижении транспортной единицы из начального пункта сети в конечный пункт. Состояние дороги определяется её изношенностью, условиями эксплуатации, влиянием погодных условий. Параметры внешней среды изменяются в зависимости от времени года, времени суток и подвержены влиянию погодных воздействий. Значения факторов, определяющих рациональную организацию транспортных потоков в сети, изменяются во времени. Наличие внутренних транспортных потоков на каждом участке сети носит вероятностный характер. Отдельные участки транспортной сети изменяют своё состояние (изнашиваются) с разной интенсивностью. Параметры внешней среды периодически изменяются. При управлении следует учитывать, что в реальной транспортной сети перечисленные факторы являются взаимосвязанными.
При управлении потоками в транспортной сети, как правило, находят оптимальное распределение транспортного потока по ветвям сети, оценивают максимальный поток в сети и находят кратчайший путь между заданными входом и выходом, выявляют узкие места в сети с целью их своевременной ликвидации. Одновременно с этими задачами оценивают суммарные затраты транспортных средств при их движении из начального пункта в конечный.
Наличие случайных факторов, влияющих на состояние транспортной сети, не позволяет решать перечисленные задачи с использованием известного аппарата, основанного на аналитических моделях, называемых графовыми моделями. Особенно большие трудности у исследователей вызывает определение узких мест в сети при наличии транспортных потоков относящихся к различным направлениям и вероятностных внутренних потоков на отдельных участках сети, которые могут приводить к увеличению числа аварий и возникновению “пробок". Исходя из выше изложенного, в качестве выхода из положения исследователи вынуждены прибегать к имитационному моделированию транспортных потоков в сети дорог с учетом случайных факторов.
Описание модели железнодорожной сети
Структуру транспортных потоков в железнодорожной сети можно представить в виде графа Gh, где h-вариант организации транспортных потоков в железнодорожной сети. Перевозки в сети реализуются в соответствии со следующими параметрами, определяемыми матрицами:
где cij - пропускные способности ветвей графа Gh, соединяющих узел i с узлом j; lij - расстояния между узлами i и j; В каждом узле железнодорожной сети происходят процессы формирования-расформирования составов. Длительность этих процессов, как правило, носит вероятностный характер и описывается функциями распределения. Функции распределения для каждого i -ого узла сети задаются матрицей
где w - общее количество входящих-исходящих дуг для узла i. Время на формирование-расформирование составов местного назначения принимается равным нулю. Максимальный поток между узлами распределяется по ветвям сети, где k -номер итерации алгоритма Форда-Фалкерсона при определении максимального значения потока. Показатель затрат движения транспортных средств вдоль ветви ij графа Gh может быть задан одной из функций:
где
где
Таким образом, формула (1.4) определяет величину затрат при перемещении транспортного средства в сети Gh в условиях максимального потока. С одной стороны поток необходимо максимизировать, а с другой стороны показатель “выгоды" должен быть минимальным. Наличие внутренних транспортных потоков в Gh обусловливает вероятностный характер пропускных способностей на многих ветвях графа Gh. Недетерминированное время формирования и расформирования составов влияет случайным образом на время передвижения транзитных составов из пункта отправления в пункт назначения по пути, содержащим этот узел. Указанные особенности не позволяют использовать для поиска максимального потока в сети алгоритм Форда-Фалкерсона. Поэтому актуально использование имитационной модели, основанной на сочетании процедуры Монте-Карло и теоремы Форда-Фалкерсона. Таким образом, ставятся задачи определения с помощью имитационной модели максимального потока в заданном направлении между множеством узлов входов в сеть и множеством узлов выходов, а так же поиска узких мест в сети Gh при перемещении транспорта в заданном направлении, устранение которых позволит достичь оптимальной организации потоков в сети. При поиске интегрального максимального потока в сети необходимо выполнение следующих условий: для каждого сочетания входа и выхода имеется максимальный поток, интегральная функция затрат имеет минимальное значение.
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2026 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|