Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Формирование понятий математического ожидания и дисперсии

 

Понятие математического ожидания в самых начальных его элементах было введено в теорию вероятностей очень рано: впервые оно появилось в переписке Паскаля и Ферма. В более явной форме оно было введено Гюйгенсом. Но в ту пору этому термину придавался смысл ожидания той средней цены, которую можно дать за приобретение случайной величины, дающей выигрыш  с вероятностью .

Для 18-го века обращение к математическому ожиданию было не характерным. Все внимание привлекало понятие вероятности случайного события. В знаменитой книге Лапласа «Аналитическая теория вероятностей» нет определения математического ожидания и тем более правил действия с ними. Возможно, это связано с тем, что Лаплас не рассматривал и понятия случайной величины, вместо этого он изучал ошибки наблюдений, плотности их распределений и даже вывел, и использовал формулу для плотности суммы двух независимых ошибок.

Казалось бы, создание и развитие теории ошибок наблюдений должно было стимулировать изучение числовых характеристик случайных величин. Однако этого не случилось. Впрочем, для нормального распределения были введены понятия истинного значения и точности наблюдений; было известно, как их вычислять по плотности распределения. Таким образом, для этого частного случая уже была известна формула для вычисления математического ожидания и дисперсии.

В начале 19-го века нормальное распределение затмило собой все остальные, поскольку с ним столкнулись в теории ошибок наблюдений и, казалось, доказали в работах Гаусса и Лежандра, что распределение ошибок наблюдений должно быть нормальным. Остальные распределения потеряли интерес, о них попросту не думали. Несомненно, в связи с этим никто не помышлял о доказательстве теорем относительно математических ожиданий и дисперсий, поскольку для нормального распределения уже было все известно. Заметим, что в книге Чебышева «Опыт элементарного анализа теории вероятностей» понятия случайной величины, математического ожидания и дисперсии даже не упоминаются. Однако в курсе лекций по теории вероятностей, которые систематически он читал в Петербургском университете, Чебышев говорит о величинах (имея в виду случайные величины), их математическом ожидании и дисперсии. Более того, в этих лекциях было сказано, что «оно (понятие математического ожидания) имеет большее значение на практике, чем сама вероятность, потому что на основании ее у нас составляется суждение о том, что мы можем ожидать перед появлением известного события».

В этих лекциях имеется доказательство и формулировка теорем о математическом ожидании и дисперсии суммы случайных величин. Там же он привел и вывод своего знаменитого неравенства. При этом он предполагал как нечто самоочевидное, что речь идет о независимых величинах.

Только в учебнике «Исчисление вероятностей» (1913–1924) строго доказываются и теорема о математическом ожидании произведения и о математическом ожидании суммы со специальным упоминанием о том, что она верна не только для независимых величин.

Понятие случайного процесса принадлежит прошлому столетию и связано с именами Колмогорова, Хинчина, Слуцкого, Винера (1894–1965). Это понятие в наши дни является одним из центральных не только в теории вероятностей, но также в естествознании, инженерном деле, экономике, организации производства, теории связи. Теория случайных процессов принадлежит к категории наиболее быстро развивающихся математических дисциплин. Несомненно, что это обстоятельство в значительной мере определяется ее глубокими связями с практикой.

20-ый век не мог удовлетвориться тем идейным наследием, которое было получено им от прошлого. В то время, как физика, инженера, биолога интересовал процесс, т.е. изменение изучаемого явления во времени, теория вероятностей предлагала им в качестве математического аппарата лишь средства, изучавшие стационарные состояния. Для исследования изменения во времени теория вероятностей конца 19-го начала 20-го века не имела ни разработанных частных схем, ни тем более общих приемов. Изучение броуновского движения в физике подвело математику к порогу создания теории случайных процессов. В исследованиях датского ученого А.К. Эрланга была начата новая важная область поисков, связанная с изучением загрузки телефонных сетей. Число абонентов изменяется во времени случайно, а длительности каждого разговора обладает большой индивидуальностью. И вот в этих условиях двойной случайности следует производить расчет пропускной способности телефонных сетей, коммутационной аппаратуры и управляющих связью систем. Работы Эрланга оказали значительное влияние не только на решение чисто телефонных задач, но и на формирование элементов теории случайных процессов, в частности, процессов гибели и размножения.

Во втором десятилетии двадцатого века начались исследования динамики биологических популяций. Итальянский математик Вито Вольтера разработал математическую теорию этого процесса на базе чисто детерминистских соображений. Позднее ряд биологов и математиков развивали его идеи уже на основе стохастических представлений. Первоначально и в этой теории применялись исключительно идеи процессов гибели и размножения.

Теория броуновского движения, исходящая из теоретико-вероятностных предпосылок, была разработана в 1905 г. двумя известными физиками М. Смолуховским (1872–1917) и А. Эйнштейном (1879–1955). Позднее высказанные ими идеи использовались неоднократно как при изучении физических явлений, так и в различных инженерных задачах.

Попытка изучения средствами теории вероятностей явления диффузии была предпринята в 1914 г. двумя известными физиками Н. Планком (1858–1947) и Фоккером.

Мы должны упомянуть еще о двух важных группах исследований, начатых в разное время и по разным поводам. Во-первых, это работы А.А. Маркова (1856–1922) по изучению цепных зависимостей. Во-вторых, работах Е.Е. Слуцкого (1880–1948) по теории случайных функций. Оба эти направления играли очень существенную роль в формировании общей теории случайных процессов.

В 1931 г. была опубликована большая статья Колмогорова «Об аналитических методах в теории вероятностей», а через три года работа Хинчина «Теория корреляции стационарных стохастических процессов», которые следует считать началом построения общей теории случайных процессов. В первой из этих работ были заложены основы теории марковских процессов, а во второй – основы стационарных процессов. Они были источником огромного числа последующих исследований.

Обе упомянутые основополагающие работы содержат не только математические результаты, но и глубокий философский анализ причин, послуживших исходным пунктом для построения основ теории случайных процессов.

Но не общефилософское содержание является основным достоинством работы Колмогорова. В ней были заложены основы теории случайных процессов без последействия и получены дифференциальные уравнения (прямые и обратные), которые управляют вероятностями перехода. В этой же работе был дан набросок теории скачкообразных процессов без последействия, подробное развитие которой позднее было дано Феллером и Дубровским.

Построение другого класса случайных процессов на базе физических задач было осуществлено Хинчиным. Он ввел понятие стационарного процесса в широком и узком смысле и получил знаменитую формулу для коэффициента автокорреляций. Эта работа послужила основанием для последующих исследований Крамера, Вальда, Колмогорова и многих других ученых.

 

 


Заключение

 

В истории каждой науки постоянно приходится сталкиваться с такими ситуациями, когда эта наука еще не создана, а исследователи рассматривают отдельные задачи, которые относятся к ее компетенции. С таким же положением мы сталкиваемся и в теории случайных процессов. Этой теории еще не было, не было и свойственных ей понятий, не было даже идеи рассмотрения изменения случайной величины во времени, а отдельные задачи в этом направлении уже изучались.

Теория вероятностей имеет богатую и поучительную историю. Она наглядно показывает как возникали ее основные понятия и развивались методы из задач, с которыми сталкивался общественный прогресс. При этом мы увидим, как человечество переходило от первичных догадок к более полному и совершенному знанию, как создание теории вероятностей позволяло переходить от строгих детерминистических представлений к более широким стохастическим концепциям, тем самым, открывая новые возможности для глубоких заключений о природе вещей.

Теория вероятностей продолжает бурно развиваться, в ней появляются новые направления исследований. Эти направления представляют значительный общетеоретический и прикладной интерес.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...