Объекты нечисловой природы как статистические данные
В математической статистике наиболее распространенный объект изучения - выборка Отметим необходимость развития методов статистической обработка "разнотипных данных", обусловленную большой ролью в прикладных исследованиях "признаков смешанной природы" [83]. Речь идет о том, что результат наблюдения состояния объекта зачастую представляет собой вектор, у которого часть координат измерена по шкале наименований, часть - по порядковой шкале, часть - по шкале интервалов и т.д. Статистические методы ориентированы обычно либо на абсолютную шкалу, либо на шкалу наименований (анализ таблиц сопряженности), а потому зачастую непригодны для обработки разнотипных данных. Есть и более сложные модели разнотипных данных, например, когда некоторые координаты вектора наблюдений описываются нечеткими множествами [43]. Для обозначения подобных неклассических результатов наблюдений в 1979 г. [84] предложен собирательный термин - объекты нечисловой природы. Термин "нечисловой" означает, что структура [85] пространства, в котором лежат результаты наблюдений, не является структурой действительных чисел, векторов или функций, она вообще не является структурой линейного (векторного) пространства. При расчетах объекты числовой природы, разумеется, изображаются с помощью чисел.
С целью "стандартизации математических орудий" [85, с.253] целесообразно разрабатывать методы статистического анализа данных, пригодные одновременно для всех перечисленных выше видов результатов наблюдений. Кроме того, в процессе развития прикладных исследований выявляется необходимость использования новых видов объектов нечисловой природы, отличных от рассмотренных выше, например, в связи с развитием статистических методов обработки текстовой информации [86].Поэтому целесообразно ввести еще один вид объектов нечисловой природы - объекты произвольной природы, т.е. элементы множества, на которые не наложено никаких условий (кроме "условий регулярности", необходимых для справедливости доказываемых теорем). Другими словами, в этом случае предполагается, что результаты наблюдений (элементы выборки) лежат в произвольном пространстве
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2026 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|