Использование объектов нечисловой природы при формировании математической модели реального явления.
Использование объектов нечисловой природы часто порождено желанием обрабатывать более объективную, более освобожденную от погрешностей информацию. "Как показали многочисленные опыты, человек более правильно (и с меньшими затруднениями) отвечает на вопросы качественного например, сравнительного, характера, чем количественного. Так, ему легче сказать, какая из двух гирь тяжелее, чем указать их примерный вес в граммах" [87,с.3]. Другими словами, использование объектов нечисловой природы - средство повысить устойчивость математических моделей реальных явлений. Сначала конкретные области статистики объектов нечисловой природы (а именно, прикладная теория измерений, нечеткие и случайные множества) были рассмотрены как частные постановки проблемы устойчивости математических моделей реальных явлений к допустимым колебаниям исходных данных и предпосылок модели [37,гл.3,4], а затем была понята необходимость проведения работ по развитию статистики объектов нечисловой природы как самостоятельного научного направления [84]. Начнем со шкал измерения. "Науку о единстве мер и точности измерений называют метрологией" [88,с.5].Таким образом, репрезентативная теория измерений - часть метрологии [89]. "Методы обработки данных должны быть адекватны относительно допустимых преобразований шкал измерения в смысле репрезентативной теории измерений" [90 §4.1]. Однако установление типа шкалы, т.е. задания группы - дело специалиста соответствующей прикладной области. Так, оценки привлекательности профессий мы считали измеренными в порядковой шкале. Однако отдельные социологи не соглашались с этим, считая, что выпускники школ пользуются шкалой с более узкой группой допустимых преобразований, например, интервальной шкалой. Очевидно, эта проблема относится не к математике, а к наукам о человеке. Для ее решения может быть поставлен эксперимент (достаточно трудоемкий), описанный в работе [38]. Пока же он не поставлен, целесообразно принимать порядковую шкалу, так как это гарантирует от возможных ошибок.
"Другими известными примерами порядковых шкал являются: в медицине - шкала стадий гипертонической болезни по Мясникову, шкала степеней сердечной недостаточности по Стражеско-Василенко-Лангу, шкала степени выраженности коронарной недостаточности по Фогельсону; в минералогии - шкала Мооса (тальк - 1, гипс - 2, кальций - 3, флюорит - 4, апатит - 5, ортоклаз - 6, кварц - 7, топаз - 8, корунд - 9, алмаз - 10), по которому минералы классифицируются согласно критерию твердости; в географии - бофортова шкала ветров ("штиль", "слабый ветер", "умеренный ветер" и т.д.) [91, с. 329]. По шкале интервалов измеряют величину потенциальной энергии или координату точки на прямой, на которой не отмечены ни начало, ни единица измерения; по шкале отношений - большинство физических единиц: массу тела, длину, заряд, а также цены в экономике. Время измеряется по шкале разностей, если год принимаем естественной единицей измерения, и по шкале интервалов в общем случае. В процессе развития соответствующей области знания тип шкалы может меняться. Так, сначала температура измерялась по порядковой шкале (холоднее - теплее), затем - по интервальной (шкалы Цельсия, Фаренгейта, Реомюра) и, наконец, после открытия абсолютного нуля температур - по шкале отношений (шкала Кельвина) [89]. Следует отметить, что среди специалистов иногда имеются разногласия по поводу того, по каким шкалам следует считать измеренными те или иные реальные величины [37, 39, 40, 63, 89]. Термин "репрезентативная" разъяснен в работах [37, 39, 40]. Он использовался, чтобы отличить рассматриваемый подход к измерениям от классической метрологии [88], от работ А.Н.Колмогорова и А.Лебега, связанных с измерением геометрических величин (например, [92])., от "алгоритмической теории измерения" [93] и др.
Необходимость использования в математических моделях реальных явлений таких объектов нечисловой природы, как бинарные отношения, множества, нечеткие множества, кратко была показана выше. Здесь же обратим внимание, что используемые в классической статистике результаты наблюдений также "не совсем числа". Именно любая величина измеряется всегда с некоторой погрешностью и результатом наблюдения является
Погрешностями измерений занимается метрология [88].Отметим справедливость следующих фактов: а) для большинства реальных измерений невозможно полностью исключить систематическую ошибку: ; б) распределение не всегда является нормальным [94]; в) и обычно нельзя считать независимыми случайными величинами; г) распределение погрешностей оценивается по результатам случайных наблюдений, следовательно, полностью известным считать его нельзя; зачастую исследователь располагает лишь границами для систематической погрешности и оценками таких характеристик для случайной погрешности, как дисперсия или размах. Приведенные факты показывают ограниченность области применимости модели погрешностей, в которой и рассматриваются как независимые случайные величины, причем имеет нормальное распределение с нулевым математическим ожиданием. Строго говоря, результаты наблюдения всегда имеют дискретное распределение, поскольку описываются числами с небольшими (1 - 5) числом значащих цифр. Возникает дилемма: либо признать, что непрерывные распределения - фикция, и прекратить ими пользоваться, либо считать, что непрерывные распределения имеют "реальные" величины , которые мы наблюдаем с принципиально неустранимой погрешностью . Первый выход в настоящее время нецелесообразен, так как потребует отказаться от большей части разработанного математического аппарата. Из второго следует необходимость изучения влияния неустранимых погрешностей на статистические выводы.
Погрешности можно учитывать либо с помощью вероятностной модели ( - случайная величина, имеющая функцию распределения, вообще говоря, зависящую от ), либо с помощью нечетких множеств. Во втором случае приходим к теории нечетких чисел, развитой П.Б.Шошиным [95] с целью описания поведения человека, и к интервальной статистике [9, 13, 19 - 25, 96 - 101]. Другой источник появления связан с принятой в конструкторской и технологической документации системой допусков на контролируемые параметры изделий и деталей, с использованием шаблонов при проверке контроля качества продукции. В этих случаях характеристики определяются не свойствами средств измерения, а применяемой технологией проектирования и производства. В терминах математической статистики сказанному соответствует группировка данных, при которой мы знаем, какому из заданных интервалов принадлежит наблюдение, но не знаем точного значения результата наблюдения. Применение группировки может дать экономический эффект, поскольку зачастую легче (в среднем) установить, к какому интервалу относится результат наблюдения, чем точно измерить его.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|