Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Задача с вертикальными углами 7 глава




Другое похожее объяснение: решающим является то, вспоминает ли ребенок свой опыт игры с мозаикой, кото­рый предполагает складывание фигур и разделение их на части.

В ходе эксперимента, непосредственно перед тем, как дать ребенку задачу, я предложил ему поиграть с мозаи­кой, с формами, более или менее похожими на фигуру из задачи. Игра допускала разнообразные сочетания, одно из которых даже частично совпадало с задачей. Эта игра оказалась в известной степени полезной. И тем не менее в некоторых случаях она не помогла найти ре­шения.

Не знаю, понимает ли читатель, что число теоретически возможных способов соединения предметов бесконечно. Даже для двух треугольников, типа изображен­ных на рисунке, существует множество возможностей, только небольшая часть ко­торых регулярно встречается у детей. Рис. 38

Здесь открывается широкий простор для экспериментальных исследований. Наблюдения свидетельствуют о том, что скорее ищутся не любые случайные внешние связи, а, на­против, поиск идет в направлении согласования, соеди­нения, получения хорошей, завершенной формы.

Даже если позитивная процедура может быть объяс­нена совместным действием усвоенных связей, с одной стороны, и целью — представлением о прямоугольнике, —

с другой, то в нашем случае, по-видимому, следует учиты­вать не просто прошлый опыт, но его характер и то, как он согласуется со структурными требованиями задачи.

Введение «помощи» дает в руки экспериментатора та­кое техническое средство, которое помогает ему прийти к пониманию происходящих процессов. Иногда полезнее давать другие задачи, которые в отдельных деталях могут быть даже более сложными и непривычными, но имеют более прозрачную, более ясную структуру, как, напри­мер, некоторые из наших АВ -пар задач. В таких слу­чаях у испытуемых иногда наступает озарение, они воз­вращаются к первоначальной задаче и находят ее реше-|ние. Однако они могут остаться слепыми, несмотря на «помощь», которая фактически содержит именно то, что им необходимо 1.

Результаты таких экспериментов свидетельствуют, ви­димо, о том, что следует рассматривать помощь в ее функ­циональном значении, в зависимости от ее места, роли и функции в рамках требований ситуации.

Теперь становятся понятным, почему иногда можно в качестве подсказки провести одну, две или даже все три вспомогательные линии, и это тем не менее не оказывает никакой помощи. Ребенок, который не понимает их роли и функции, может счесть их дополнительными усложне­ниями, непонятными добавлениями. В результате ситуа­ция может стать еще более сложной. Сами по себе линии могут не пролить свет на задачу.

И разве описанный в начале этой главы урок не был крайним примером такой процедуры? Учитель точно и ясно показал все необходимые элементы; он тре­нировал учеников, начиняя их знаниями, полученными рутинными способами, но так и не добился ни действи­тельного понимания, ни умения действовать в изменен­ных ситуациях.

Нельзя подменять осмысленный процесс рядом за­ученных связей, даже если в результате ученики и смо­гут повторить и проделать то, чему их обучили. Потому что тогда потребовались бы дополнительные упражнения для заучивания этих возможных вариаций самих ситуа­ций, то есть АВ -случаев. Необходимо было бы время от времени формировать у них новые типы А -реакций. Ут-

1См. М a i е г N. R. F. Op. cit.

верждение, что осмысленный процесс можно заменить рядом ассоциаций, ничего не доказывает, так как оно не применимо для объяснения различных АВ -случаев. Такое «доказательство» подобно попытке имитировать траекторию движения мяча в эксперименте, когда дви­жение под действием силы тяжести заменяется движе­нием вдоль открытых концов ряда параллельных трубок вследствие давления выходящего из них воздуха. (По­следнее можно варьировать и таким образом получать кривые, соответствующие различным траекториям бро­шенного мяча, которые определяются тем, под каким углом брошен мяч и каков его вес.) Или же попытке тре­бовать от вычислительной машины точных решений ма­тематических задач, забывая оснастить ее дополнитель­ными приспособлениями, необходимыми для того, чтобы машина могла с таким же успехом действовать в изме­ненной ситуации. Такая машина может быть очень эф­фективной при решении рутинных задач, но не сможет адаптироваться к новым A -вариациям. Более того, маши­на не знает, какую операцию следует выполнить; это вы должны сообщить машине, ставя задачу, нажимая кла­вишу операции сложения, вычитания и т. д.

Короче говоря, прошлый опыт играет очень большую роль, но важно, что мы извлекли из опыта — слепые, непо­нятные связи или понимание внутренней структурной связи. Важно, что и как мы воспроизводим, как приме­няем воспроизведенный опыт: слепо и механически или в соответствии со структурными требованиями ситуа­ции.

Помимо специфического структурного опыта, кото­рый мы приобретаем, сталкиваясь с задачей, — опыта, от­носящегося к структурному восприятию, к изменениям в структурном восприятии, к наблюдениям над результа­тами проб и т. д., — существует много общих свойств окружающего нас мира, которые обычно играют огром­ную роль в наших действиях с предметами, и некоторые находят специфическое отражение в конкретных фазах, не­обходимых для решения той или иной геометрической за­дачи. Они являются столь очевидными, что большинство из нас о них не задумывается. В самом деле, читателя может шокировать даже простое упоминание о том,

что при перемещении треугольника слева направо раз­меры или форма его никак не меняются:

что при этом не происходит никаких изменений в дру-

местах фигуры, другие ее части не уменьшаются и не увеличиваются;

что такие объекты, как параллелограмм и т. д., сохра­няют свое постоянство, не изменяются в размере, когда проводят дополнительные линии;

что установленное равенство некоторых отдельных линий или углов обеспечивает равенство фигур, располо­женных на большом расстоянии друг от друга;

что разрезание фигуры на части и их перегруппировка в ходе реально осуществляемых операций не отражаются на ее площади;

что даже чисто мыслительные операции — установле­ние равенств и т. д. — ни в каком смысле не меняют дан­ные, и т. п....

Большая часть приведенных высказываний кажется тривиальной и столь очевидной, что они выглядят как необходимо истинные скрытые аксиомы. Но это не так. Если их рассматривать в связи с реальными событиями, то они ни в коей мере не являются «необходимыми» фак­тами. Возможны миры, в которых эти факты не будут справедливы. Современная наука показала, что даже в нашем мире они являются во многих отношениях весь­ма упрощенными допущениями, а в некоторых сферах обыденного опыта они фактически не являются истин­ными.

Но оставим в стороне вопросы фактической истинно­сти. Являются ли эти связи такими же связями, ассоциа­циями в точном смысле этого слова, как, например, ассо­циации, которые возникают между бессмысленными сло­тами? Нет! Они являются скорее простыми ожиданиями, обусловленными структурным контекстом, и отличаются от совершенно произвольных, слепых связей. Точнее го­воря, пока не вступают в силу другие факторы, со струк­турной точки зрения проще и разумнее всего ожидать, что такие изменения, как, например, странное, скажем, 7-процентное сокращение правой части параллелограмма при разрезании левой его части, не произойдут.

В свете экспериментов, проведенных гештальтпсихоло­гами, кажется совершенно невероятным, чтобы эти свой­ства усваивались, заучивались и приобретались на основе прошлого опыта, как это утверждается в традиционной ассоциативной концепции. В действительности они опре­деляются законами организации осмысленной структу­ры; они в значительно большей степени объясняются

структурной организацией работы нашего мышления и мозга, чем слепыми ассоциациями 1.

Таким образом, упомянутые скрытые аксиомы отнюдь не являются результатом слепых ассоциаций, которые могут связывать любые элементы независимо от их внут­ренней связи и структурных характеристик.

В таких процессах мышления важную роль играют также и другие факторы нашего опыта. Установки фор­мируются у нас при столкновении с проблемными ситуа­циями; опыт достижений или только неудач, установка на рассмотрение объективных структурных требований ситуации, действия не по собственному произволу, а в соответствии с требованиями ситуации, непредубежден­ный подход к задаче, уверенность и смелость — вот что характеризует реальное поведение, увеличение или умень­шение нашего жизненного опыта.

Таким образом, это проблемы личности, структуры личности, особенностей взаимодействия индивида и его окружения. В связи с этим следует понять структуру со­циальной ситуации, ту социальную атмосферу, в которой находится индивид, ту «философию жизни», которая фор­мируется в процессе поведения ребенка или взрослого в его окружении; отношение к объектам и проблемным си­туациям очень сильно зависит от этих факторов. Так, со­циальная атмосфера, царящая в классе, оказывает значи­тельное влияние на формирование подлинного мышления. Для решения такого рода проблем иногда полезнее со­здать правильное настроение в классе, вместо того чтобы навязывать субъекту определенные операции пли меха­нические упражнения.

Поставив перед собой цель понять некоторые фунда­ментальные вопросы, мы ограничили рамки нашего обсуж­дения. Мы смогли это сделать благодаря тому, что зани­мались относительно замкнутой областью. Но если мы действительно хотим понять, как достигается (или не до­стигается) решение, то мы должны рассмотреть значи­тельно более широкое поле. Тогда возникает вопрос об организации более широкого поля, в котором происходя-

1 Wertheimer M. Untersuchungen zur Lehre von der Ge­stalt, II.-"Psychologische Forschung", 1923, Vol. IV, S. 336, 349. см. также: Ellis W. D. Op. cit., selection 5; Beardslее D. С, and Wertheimer M. Op. cit., p. 115—135.

щее событие является только частью 1 личностного, со­циального, исторического поля. Что касается последнего, то наше поколение стоит на плечах мыслителей прошло-то. Это задачи большого масштаба. Сожалею, что здесь я не могу заняться этими вопросами вплотную. Во всех этих сферах не меньше структурных проблем, чем в на­ших скромных примерах. В этом направлении уже кое-что сделано, но необходимо сделать еще больше.

Все еще встречаются психологи, которые, совершенно не понимая гештальттеорию, считают, что она недооце­нивает роль прошлого опыта. Гештальттеория старается установить различие между суммарными совокупностя­ми, с одной стороны, и гештальтами, структурами — с другой, как в отношении частей целого, так и в отношении -целостного поля, и разработать соответствующие научные инструменты для исследования последних. Она восстает против догматического применения ко всем случаям ме­тода, который адекватен лишь для простых бесструктур­ных наборов. Вопрос в том, может ли подход, делающий основной упор на слепые связи и поэлементный анализ, дать адекватное объяснение реальных процессов мышле­ния и роли прошлого опыта. Прошлый опыт следует тща­тельно изучать, но сам по себе он является неоднознач­ным; пока опыт рассматривается в терминах элементов и слепых связей, он не может быть магическим ключом к решению всех проблем.

38. Вернемся теперь к вопросу, который в конце пер­вой части (пункт 10) мы оставили без ответа, — к проб­леме АB -реакций. В предыдущих рассуждениях содер­жится прямой ответ.

Учитель показал способ решения задачи: он научил учеников проводить вспомогательные линии. Если учени­ки действительно поняли суть дела, то для них эти линии не просто «первая, вторая, и третья линии», или, как сказал учитель, «вертикальная линия, проведенная из ле-

1 См.: W е г t h e i m е г M. Über das Denken der Naturvölker, Zahlen und Zahlgebilde. — "Zeitschrift für Psychologie", 1912, Vol. 60, S. 321—378. Wertheimer M. Drei Abhandlungen zur Gestalt-theorie. Erlangen, 1925. Ellis W. D. Op. cit., selection 22; Schul­te Н. Versuch einer Theorie der paranoischen Eigenbeziehung und Wahnbildung. — "Psychologische Forschung", 1924, Vol. 5, S. 1—23, Lewin K. A dynamic theory of personality. New York, McGraw-Hill. 1935; Levy E. Some aspects of the schizophrenic formal disturbance of thought. — "Psychiatry",.1943, vol. 6, p. 55—69.

вого верхнего угла, линия, проведенная из правого верх­него угла и продолжение горизонтальной линии за правый нижний угол». Они не образуют простую сумму элемен­тов которые слепо связаны с решением. Если ученики извлекли из урока только это, то они не смогут спра­виться с критическими АB -задачами и не будут иметь основы для осмысленного решения новых задач.

Но если они уловили суть дела — а именно это-то и означает понимание, — то они понимают структурную роль и функции этих линий, их значение в осмысленном контексте. Они понимают, как именно эти линии в дан­ной ситуации приводят к решению, потому что они внут­ренне связаны с целью, потому что существует структур­ное ρ-отношение между этими операциями и целью. Эти операции рассматриваются «сверху» с точки зрения внут­ренней структуры всей процедуры, с точки зрения того, как они функционируют в данном контексте и отвечают его требованиям. И это становится основой для осмыс­ленного решения АB -задач.

Важны два момента: структурное значение частей и отчетливый характер их внутренней связи с поставлен­ной целью.

Вначале рассмотрим, чем вооружает детей усвоенный урок в отношении структурного переноса на измененные ситуации? Будем говорить о проведении этих трех линий как о «усвоении средств достижения цели». Для фигуры, данной учителем (ситуация S1), средства т 1— проведение трех линий — ведут к цели g. Ученики заучивают s1, m 1, g.

На основании чего мы сможем в ситуации s 2 найти соответствующие средства т 2, в s3 m 3и т. д.? Что обес­печивает структурный перенос m на измененные ситуа­ции?

Очевидно, следует различать возможные ответы. Объ­ективно одни и те же средства, m1, могут тем не менее выполнять различные функции: если мы усвоили эти три операции только как простую сумму, не поняв внутрен­ней, структурной связи между именно этими m в данной ситуации и успешным достижением цели, то мы овладе­ли лишь рядом операций, которые могут быть повторены и правильно применены в рутинных вариациях в резуль­тате какого-то структурного переноса или слепого исполь­зования формулы. Задача может быть решена, пока эти вариации в s допускают применение именно этих линий. Но когда эти линии не соответствуют новой ситуации, мы

не находим в выученном материале основы для решения. Иными словами, если смысл этих трех операций задается только формулировкой учителя (два перпендикуляра из верхних углов, продолжение горизонтальной линии впра­во), то тогда длины сторон и расстояния между ними мо­гут меняться в пределах, не выходящих за рамки рутин­ных ситуаций; однако в случаях, когда эти три указан­ных общих средства неприменимы и требуется их изме­нение, усвоенный материал не оказывает никакой по­мощи.

Напротив, когда понята суть процедуры, решение центрируется совершено по-иному и возникающий в ре­зультате структурный перенос коренным образом отли­чается от переноса первого типа. Если центром процеду­ры является схватывание структуры — восполнение недо­статка в фигуре за счет другой части, — то и в новой ситуации следует искать нарушения и пытаться их устра­нить. Соответственно, число, длина и место вспомогатель­ных линий могут изменяться в зависимости от особенно­стей новой ситуации 1.

Как и в правильных процессах мышления (с. 76—78), последовательные фазы решения возникают в результате понимания структурных нарушений, структурных требо­ваний; в данном случае реакции на измененные ситуации оказываются осмысленными и возникают благодаря тому, что было понято в ситуации обучения.

Бывает, что испытуемый в ситуации обучения не до­стигает действительного понимания. Он успешно справ­ляется с рутинными вариациями, применяя показанный учителем метод, но не может решить новые задания. Он спонтанно возвращается к пройденному уроку, обдумы­вает его, а затем вдруг восклицает: «Понял!» — и, поняв роли и функции s1, m 1, приступает к новой задаче и легко с ней справляется. Испытуемые часто очень ярко описывают то, что с ними происходит в момент перехода от копирования метода, которому их научил учитель, к «прозрению» — как в результате осознания внутренней

1 В некоторых случаях (см. пример, приведенный на с. 46) средствами т 2являются не три линии, а две. В случае, описанном на с. 43, параллелограмм располагался так, чтобы области наруше­ний менялись местами. В описании на с. 44—45 содержится намек на то, что следует искать части, которые могут меняться местами. Этот намек может навести на мысль провести вертикали, делящие наклонные линии пополам.

структуры, внутренних требований процесса поведение трех линий неожиданно становится ясным, прозрачным и осмысленным. «И тогда легко решать новые задачи».

Короче говоря, мы можем резюмировать сказанное в следующей формуле: в реальных A -реакциях поведение определяется требованиями данной ситуации, в B -реакциях — внешними деталями. В A -реакциях испытуемый рассматривает структуру новых ситуаций, предварительно усвоив структуру ситуации обучения.

Проблема структурного переноса является довольно важной, и, хотя я думаю, что читатель, который внима­тельно следил за изложением, понял главное, я могу до­бавить, что проблема эта, конечно, не решается формули­ровкой этого общего правила. Для ученого возникает ряд проблем: здесь открывается широкий простор для экс­периментального исследования условий и законов, опре­деляющих зависимость переноса от различных ситуаций обучения. Чтобы понять эту проблему, необходимо ис­следовать ее, сравнивая с теми случаями, когда обучение не способствует осмысленному поведению в измененных ситуациях, когда даже самый способный человек не мо­жет найти основания для осмысленного переноса хорошо известных и весьма привычных «зазубренных» учебных ситуаций.

Между тем испытуемый может постичь внутреннюю структуру ситуации, которая впоследствии поможет ему справиться с вариациями исходной задачи. Рассмотрим крайний случай s 1, m 1, g, в котором такое постижение является невозможным. Допустим, что вместо того, чтобы провести эти три линии, которые превращают параллело­грамм в прямоугольник равной площади, испытуемому показывают параллелограмм на экране; когда испытуемый нажимает на красную, синюю и зеленую клавиши, то параллелограмм исчезает и выпадает плитка шоколада пли на экране появляется прямоугольник. Он вполне мо­жет это усвоить. Но если впоследствии вы покажете ему другую фигуру — А- или B -типа, — то он, естественно, растеряется. Он попытается нажимать те же клави­ши, но безрезультатно. Он может, пользуясь методом проб и ошибок, нажимать другие клавиши, может даже случайно нажать нужные клавиши, но опять не достигнет цели, когда ему будет показана другая фигура, пото­му что невозможно обнаружить осмысленную внутреннюю связь между s 1, m 1, g. Эти связи являются совершенно

случайными пли скрытыми, и в результате нет основы для разумных вариаций.

Многие теоретики не видят этой проблемы, не видят различия между этими случаями и случаями, когда воз­можно осмысленное решение. У них наготове легкий спо­соб обойти проблему; они обращают внимание — и вполне резонно — на то, что в первом случае исключается помощь со стороны прошлого опыта, и делают вывод — невер­ный, — что отличие случаев первого типа объясняется просто действием прошлых ассоциаций, имеющих ту же природу, что и ассоциации, возникающие при механиче­ском обучении. Осмысленное обучение и применение зна­ний являются для них лишь результатом действия ранее возникших ассоциаций. Я надеюсь, что после всего ска­занного читатель поймет, что это слишком простое реше­ние проблемы: даже если бы все действующие факторы были обусловлены прошлым опытом, проблема все равно остается. Главный вопрос не в том, действительно ли прош­лый опыт играет роль, а в том, какой именно опыт — сле­пые связи или структурное понимание с последующим осмысленным переносом, а также в том, как мы исполь­зуем прошлый опыт: посредством внешнего воспроизве­дения или на основе структурных требований, его функ­ционального соответствия данной ситуации. Ссылка на прошлый опыт, таким образом, не решает проблему, та же самая проблема возникает в отношении прошлого опыта.

Очень интересно исследовать, как используется то, что было приобретено в прошлом; но для нашей проблемы в первом приближении не существенно, извлекается исполь­зуемый материал из прошлого или из настоящего опыта. Важна его природа и то, была ли понята структура, а так­же как это происходит. Даже если бы все, в том числе и само понимание, объяснялось, в сущности, повторением прошлого опыта — надежда, которую питают некоторые психологи, но которая, по моему мнению, является лож­ной или по крайней мере необоснованной, — или если бы мы подходили с точки зрения упражнения даже к ос­мысленным структурам, то все равно было бы важно рассмотреть и изучить описанное различие, поскольку оно является решающим для существования структурно осмысленных процессов. В обычном языке «приобрести опыт» означает для большинства людей нечто весьма от­личное от простого накопления внешних связей, анало­гичных тем механическим связям, которые возникали в

нашем последнем примере; имеется в виду, что приобре­тается нечто более осмысленное.

Мы можем суммировать относящиеся к параллело­грамму А—B -вопросы следующим образом: что касается того, какую роль играют данные s 1, m 1, g при встрече с новой ситуацией, то решающим моментом является то, что именно усваивается из учебного примера и другого прошлого опыта. Только по осмысленной реакции на АB -вариации можно судить о том, какой опыт приобрел испытуемый — слепые связи или действительное понима­ние. К этому надо добавить, что специфические особенно­сти s 1, m 1, g могут играть большую или меньшую роль; в оптимальном случае приобретается удивительная спо­собность двигаться вперед, выявляя требования рассмат­риваемой ситуации и действуя в соответствии с ними.

39. В таких процессах можно обнаружить довольно много операций традиционной логики. Можно даже опи­сать этот процесс как ряд последовательных суждений. Но совокупность таких суждений не отражает того, что в действительности происходит в ходе такого процесса. Многое ускользает. Исчезает динамика, сама жизнь.

Традиционная логика мало интересуется процессом поисков решения. Она концентрирует внимание скорее на вопросе правильности каждого шага доказательства. Время от времени в истории традиционной логики выска­зывались намеки на то, как следует действовать, чтобы найти решение. Характерно, что эти попытки сводились к следующему: «Найдите какие-нибудь известные вам общие суждения, содержание которых относится к некоторым из обсуждаемых вопросов; выберите из них такие пары, кото­рые благодаря тому, что они содержат общее понятие (сред­ний термин), допускают построение силлогизма» и т. д. (см. пример из гл. 3, с. 133, который, несмотря на свою неле­пость, в значительной мере соответствует такой процедуре).

Мы еще вернемся к проблеме доказательства; тогда мы увидим, что осмысленное доказательство тоже содер­жит структурные факторы. А пока рассмотрим некото­рые характерные аспекты формально-логического подхода на примере следующего замечания логика: «Все сводится к использованию закона коммутативности, a + b = b + a, точно так же, как 2 + 5 = 5 + 2; в обоих случаях результат равен 7» (эмпирик придет к этой формуле тем же самым путем).

Подумайте над этим, читатель. Сравните это утвержде-

ние в духе традиционной логики с подлинным процессом поисков решения. Возможно, вы согласитесь с этим ут-

a + b = b + a


Рис. 39

верждением, а возможно, и нет. Если вы видите разли­чия, то скажите, являются ли они несущественными, вто­ростепенными? Или они предполагают факторы, имеющие решающее значение для этой проблемы продуктивного мышления? Если вы логик и привыкли к методам тради­ционной логики, то, определяя, что такое логика и что такое мышление, вы наверняка будете резко возражать против некоторых из приведенных ниже замечаний. По­жалуйста, не прибегайте к обычным оговоркам и не ухо­дите от ответа; постарайтесь по достоинству оценить те моменты, которые я собираюсь подчеркнуть. Поймите меня правильно: это ни в коей мере не является сомне­нием в корректности традиционной логикн. Это призыв осознать некоторые проблемы и отвести доктринам тради­ционной логики должное место.

Закон коммутативности (а + b = b + а) так или иначе используется в процессе определения площади паралле­лограмма, но он используется совершенно иным путем, чем принято считать в традиционной логике. И именно это важное отличие и определяет возможность подлинных продуктивных процессов.

1) Прежде всего коротко напомним, что а и b в пока­занной на рис. 39 фигуре не даны с самого начала. К та­кому разбиению параллелограмма нужно еще прийти в процессе решения задачи! И очень важно, чтобы был най­ден именно этот способ деления и создан именно этот треугольник a, тогда как в формуле это несущественно, ведь а и b ссамого начала в готовом виде присутствуют в ней.

2) Хотя равенство a + b = b+a предполагает, что пере­мена места не оказывает никакого влияния на а, в ходе

реального мышления после перемещения треугольника а изменяется его функциональное значение. В левой части равенства а представляет собой треугольник, который на­ходится для того, чтобы избавиться от нарушения. В пра­вой же части равенства треугольник а необходим для за­полнения пустоты. Равенство выполняется только в отно­шении тождества размеров; равенство размеров имеет важное значение, но переход от левой части к правой — это переход к совершенно другой вещи: а + b не тождест­венно b + а в отношении формы и они существенно раз­личаются в самом процессе.

 

Рис. 40

Даже если отвлечься от реального процесса, то фор­мула а + b = b + а в точном смысле не эквивалентна равен­ству, изображенному на схеме (см. рис. 40). Она будет вполне адекватной только в том случае, если две части а и b не имеют никакого отношения друг к другу, явля­ются просто двумя фигурами, относительное положение которых не имеет никакого значения. Но форма имеет важное значение — иначе у нас не будет ни параллело­грамма, ни прямоугольника.

Анализ частей схемы ясно показывает, что левая и правая фигуры сильно отличаются друг от друга. Это от­носится не только к фигурам в целом — параллелограмму и прямоугольнику, — но также и к их отдельным частям. Если читатель изучит и сравнит значения линий, он будет очень удивлен тем, как сильно отличаются роли этих линий в левой и правой частях схемы. Укажу только не­сколько отличий. Линии 1 и 6 слева являются граница­ми; справа они сливаются и исчезают в процессе заверше­ния прямоугольника. Слева линии 1, 5, 6, 2—7 образуют фигуру и появляются линии 3—4, тогда как справа фи­гуру образуют линии 4, 5, 3, 7—2, а линия 6—1 исчезает. Равенство игнорирует тот факт, что эти линии совместно образуют границы фигуры, а это обстоятельство имеет важное значение для фигур, площадь которых необходи­мо определить.

Так обстоит дело и с углами: их значение и функции в двух фигурах совершенно различны; углы, которые иг­рают важную роль в левой, в правой исчезают, и т. д.

Если провести точный анализ всех таких факторов, то обнаружится огромное число структурных различий. Если их рассматривать по отдельности, то они будут ка­заться очень сложными. Очень трудно, да и, по всей ве­роятности, невозможно было бы прийти к ясному процес­су, если начинать с простой суммы таких детализирован­ных особенностей. Но если подходить к проблеме «сверху», исходя из целостных свойств фигур и функционального значения линий и т. д., то эта пугающая каждого слож­ность исчезает.

3) В продуктивных процессах основным является из­менение, которое происходит, когда a + b превращается в b+а. Для фигур мы имеем не просто отношение равен­ства двух вещей, как в формуле, а направленное изме-

a + b → b + a

и к тому же еще и необходимое.

Это переход к чему-то совершенно иному. Мы имеем не просто равенство, а переход. И хотя проблема валид­ности очень важна, она, в сущности, игнорирует такую направленность. В этом и заключается основное отличие нашего подхода от традиционного логического подхода. В то время как традиционную логику интересует глав­ным образом вопрос «равенства» (или «эквивалентности») а 1и a 2, в гештальттеории основным является переход от а 1к a 2, тот факт, что осуществился именно этот переход, и т. д. И это фундаментальное положение; оно означает принципиальный поворот от статики к рассмотрению ди­намики процесса мышления.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...