Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Обработка питательной воды




Для обеспечения требуемых норм качества питательную воду подвергают различной обработке: фильтрации, деаэрации, дистилляции, электрохимическому и химическому обессоливанию и т. д.

Фильтрация воды и очистка конденсата от масла имеют особо важное значение для судов с паровыми поршневыми механизмами и для котлов дизельных танкеров, где имеется подогрев груза. Для очистки конденсата от масла применяют фильтры, установленные в теплых ящиках или на магистралях питательной воды и состоящие из кокса, люфы, махровой ткани, синтетических материалов (поролона) и т.д. Фильтрующий материал выбирают главным образом по его способности очищать воду от нефтепродуктов. Для этой же цели на некоторых судах теплый ящик имеет внутри ряд перегородок, образующих каскадное движение воды (Рис. 4.21).

Рис. 4.21 Принципиальная схема теплого ящика судов типа "Вытегралес".

Конденсат отработанного пара по трубопроводу 3 поступает в верхнюю часть теплого ящика и прежде, чем попадет в фильтр 1, проходит каскадный маслоотделитель 2. По перепускному патрубку 7 конденсат направляется в нижнюю часть теплого ящика, а оттуда по трубопроводу 5 к питательным насосам. В нижней части теплого ящика установлен змеевик 6 для охлаждения питательной воды. Существенным недостатком этой установки является подача добавочной воды в нижнюю часть теплого ящика 4. Это приводит к тому, что если вода в танках запаса содержит механические примеси, то они беспрепятственно попадают в питательную магистраль котла. Особенно интенсивные загрязнения теплого ящика и магистрали наблюдаются в плохую погоду, когда качка судна вызывает переход осадка в танках во взвешенное состояние.

Конденсат к теплому ящику подводится от подогревателей топлива и масла, как правило, через специальную контрольную цистерну, имеющую смотровое стекло для визуального наблюдения за качеством конденсата. В случае необходимости загрязненный конденсат может перепускаться в сточную цистерну. Пар из системы отопления и других потребителей, где нет опасности загрязнения, идет в конденсатор и оттуда конденсат поступает в теплый ящик.

Рис. 4.22 Конденсатно-питательная система судов типа "Иловайск".

Подвод конденсата от обогрева танков 2 (Рис. 4.22) и других потребителей 3 возможен через охладитель 4 конденсата, если нет опасности загрязнений, минуя контрольную цистерну 12. В тех случаях, когда конденсат направляется через контрольную цистерну, он охлаждается специальным змеевиком, установленным в ней, по которому проходит забортная вода из той же магистрали 1, что и для охладителя конденсата. Кроме того, цистерна 12 расположена в теплом ящике 5 и частично теплота от нее отводится омывающей снаружи водой. Цистерна оборудована смотровым стеклом, патрубками слива нефтепродуктов 11 и осушения 10.

Питание котлов на этих судах может осуществляться автоматически через регуляторы питания (трубопроводы 7) или вручную по обводной системе 9. Питательные насосы 8 могут брать воду как из теплого ящика, так и непосредственно из танка. Для ввода в котел химических препаратов обработки воды в системе предусмотрен дозировочный бачок 6 вместимостью 10 л.

Рис. 4.23 Система охлаждения конденсата на судах типа "Игорь Грабарь".

На судах отдельных серий (преимущественно финской постройки) охладитель конденсата отсутствует, а его роль выполняет змеевик, установленный в теплом ящике (Рис. 4.23). Пароконденсатная смесь от потребителей по трубопроводу 9 поступает в змеевик и только после этого попадает в ящик. В змеевике происходят конденсация остатков пара и охлаждение конденсата. Для охлаждения воды в теплом ящике установлены дополнительно два змеевика, прокачиваемые забортной водой. Подвод забортной воды (трубопровод 1) осуществляется из системы охлаждения главного и вспомогательного двигателей, температура ее на входе в теплый ящик составляет около 20 °С даже в зимнее время. Это приводит к тому, что вода в теплом ящике нагревается до 90 °С, а иногда и выше. Отводится забортная вода через трубу 3. Конденсат от подогрева топлива и масла по магистрали 6 подается через контрольную цистерну 5, в случае загрязнения его предусмотрен слив 7. Добавочная вода подается через трубу 8, а на случай переполнения теплого ящика предусмотрен перепуск 2 в танк. Для предотвращения избыточного давления в теплом ящике и контрольной цистерне они оборудованы воздушной трубой 4.

Деаэрация воды производится с целью удаления растворенных в ней газов. Для СКУ главной задачей этого вида обработки является удаление из воды кислорода и углекислоты. Наиболее эффективный способ удаления растворенных газов из воды - десорбция. Он основан на известных законах Генри - Дальтона, характеризующих зависимость между концентрацией растворенного газа и его парциальным давлением. Концентрация растворенного в воде газа выражается уравнением

СГ = КГРГ = КГОВП)

где КГ- коэффициент абсорбции газа водой (растворимости); РГ и РВП - парциальное давление газа и водяного пара, МПа; РО- общее давление над поверхностью воды, МПа.

Из приведенного выражения видно, что концентрация газа в воде уменьшается при увеличении парциального давления водяных паров, чему способствует повышение температуры воды. От температуры воды существенно зависит и коэффициент абсорбции газа водой (растворимость в воде). На Рис. 4.24 показана эта зависимость для кислорода и углекислоты,т. е. наиболее характерных газов для питательной воды СКУ.

Рис. 4.24 Зависимость растворимости углекислого газа (1) и кослорода (2) в воде от температуры.

Основным коррозионно-активным газом для судовых котлов является кислород. Выбор и использование эффективного способа обескислороживания питательной воды зависят от назначения и типа котельной установки, параметров пара, условий работы и принятой системы питания и водоподготовки, исходной и конечной концентраций растворенного в воде кислорода.

Кислород удаляют из воды десорбционными (физическими) и химическими методами. Применительно к СКУ десорбционный метод реализуется преимущественно на паротурбинных судах (главные котлы) с использованием термических деаэраторов. В деаэраторах вода нагревается до температуры кипения при одновременном распылении и удалении из нее газов. В соответствии с законами Генри и Дальтона (закон Дальтона является частным случаем закона Генри) условиями хорошей работы деаэратора являются нагревание воды до температуры кипения при давлении, поддерживаемом в аппарате, тонкое распыление и равномерное распределение воды по сечению деаэратора, удаление паровоздушной смеси из аппарата.

Для вспомогательных КУ большое распространение получили химические методы деаэрации, основанные на связывании кислорода в коррозионно-инертные вещества в результате окислительно-восстановительных процессов. В качестве восстановителей используют такие реагенты, как сульфит натрия, гидразин.

Обработка воды сульфитом натрия основана на реакции окисления сульфита растворенным в воде кислородом.

Интенсивность реакции зависит от температуры воды и водородного показателя. Наиболее благоприятные условия для ее протекания существуют при температуре воды не менее 80 °С и pH≤8.

Обескислороживание воды гидразином осуществляется с применением преимущественно гидразингидрата N2H4·H2O, который активно взаимодействует с кислородом, не увеличивая при этом солесодержание воды.

В зарубежной практике используют химические реагенты на основе гидразина с введением катализаторов. Так, в Германии активированный гидразин имеет товарное наименование левоксина, а фирма „Дрю Амероид" (США) выпускает подобный препарат с названием амерзин. Интенсивность обескислороживания гидразином значительно выше, чем при сульфитировании, и быстро увеличивается при повышении температуры воды. В обоих случаях препараты вводят в питательную воду, и температурный режим контролируют по воде в теплом ящике.

Гидразин, вводимый в питательную воду, взаимодействует с оксидами железа и меди, присутствующими в воде и на поверхности металла.

В котловой воде и в пароперегревателях избыток гидразина разлагается с образованием аммиака.

При использовании гидразингидрата необходимо учитывать его свойства. Гидразингидрат - бесцветная жидкость, легко поглощающая из воздуха кислород, углекислоту и водяные пары, хорошо растворим в воде. Гидразин токсичен, а при концентрации более 40% - горюч. При обращении с ним следует строго соблюдать соответствующие правила безопасности труда.

Ионообменную обработку питательной воды производят с целью снижения ее жесткости и предотвращения таким образом накипеобразования в котле. В зависимости от типа применяемых материалов для ионного обмена процесс, происходящий в ионообменном фильтре, может быть катионным и анионным.

В судовой практике чаще всего применяют метод катионирования, сущность которого заключается в замене накипеобразующих ионов Са2+, Mg2+ ионами Na+ или Н+ при фильтрации жесткой воды через особые материалы, склонные к ионному обмену.

Общее солесодержание воды при катионировании не изменяется. Жесткость обычной пресной воды после прохода через катионит существенно понижается и не превышает 0,02-0,03 мг-экв/л.

При истощении фильтра катионит подвергается регенерации пропусканием через него 5-10 %-ного раствора поваренной соли для Na-катионита или 2 %-ного раствора серной кислоты для Н-катионита со скоростью 7-10 м/ч. В результате регенерации ионы Са2+ и Mg2+ вновь заменяются катионами Na или Н. Регенерация производится, как правило, ежесуточно продолжительностью около 1 ч.

Наиболее распространены Na-катионитовые фильтры. Фильтрующими материалами могут быть естественные (глауконит - минерал, водный алюмосиликат железа и калия сложного химического состава, имеющий зеленоватый оттенок) и искусственные (сульфоуголь).

При Na-катионировании жесткость воды уменьшается, но растет щелочность вследствие образования едкого натра и отпадает необходимость вводить дополнительную щелочь. Однако если обработке Na-катионированием подвергается вода с большой жесткостью, то в котле может появиться избыток щелочи и привести к щелочной коррозии.

Для предотвращения образования избытка щелочи целесообразно использовать смешанное (параллельное или последовательное) катионирование, пропуская воду через Na и Н-катионитовые фильтры.

Сложность оборудования, большие размеры, а также необходимость иметь на судне материалы регенерации являются причинами ограниченного применения этого метода водообработки на судах.

Применительно к малым установкам использование сложных схем водообработки экономически нецелесообразно. В этих случаях рациональное решение проблемы водоподготовки может быть достигнуто путем применения простых и дешевых средств, к числу которых могут быть отнесены физические методы обработки воды (ультразвуковой, электростатический, магнитный и т. д.).

Ввиду простоты применяемых устройств и удобства эксплуатации большое применение находит магнитный метод обработки. В составе отечественного флота этот способ используют на судах типов „Беломорсклес", „Ленинская гвардия", „Игорь Грабарь", „Муром", имеющих магнитные фильтры (постоянные магниты) на магистралях питательной воды.

Как показывает практика эксплуатации магнитных устройств, вода, обработанная в магнитном поле, значительно уменьшает свои накипеобразующие свойства. При этом наблюдается интенсивное разрушение прочных накипных отложений, образовавшихся до применения магнитного метода водоподготовки.

Основная цель магнитного метода водообработки - изменить условия кристаллизации накипеобразователей и обеспечить их выпадение не на поверхности нагрева, а в виде шлама в объеме воды, поступающей в котел. Поэтому результаты применения этого метода в основном зависят от эффективности устройств и мероприятий, обеспечивающих своевременное удаление взвешенных частиц из объема воды. В котле скапливается илообразная масса, которая легко может удаляться продуванием его.

Применение магнитной обработки воды не требует систематического введения химических реактивов внутрь котла.

Исключает регулярное использование водокоррекционных препаратов и ультразвуковая обработка. Приборы ультразвуковой обработки есть и на судах отечественного флота. Например, на судах типа „Красноград", „Краснокамск", „Айнажи" установлены на котлах приборы системы „Крустекс" (Англия). Следует иметь в виду, что эти приборы воздействуют не на воду, а служат для разрыхления уже образующихся отложений. Они предотвращают скопление накипи на поверхностях нагрева, но не препятствуют ее образованию. Разрыхление накипи способствует удалению ее при продувании котла.

 

Обработка котловой воды

 

Качественные показатели воды в котле в процессе работы ухудшаются. С питательной водой в котел вносится дополнительное количество химических и механических примесей. Испаряющаяся вода уходит к потребителям в виде пара, оставляя основную часть солей в котле, что вызывает образование накипи и шлама.

Задачей обработки котловой воды является преобразование накипеобразующих веществ в шлам, который удаляется при продувании котла. Основными накипеобразователями являются соли кальция и магния, а для обработки воды используют преимущественно фосфаты натрия.

Эффективное осаждение накипеобразующих солей кальция происходит при введении тринатрийфосфата. При этом необходимо контролировать щелочность воды.

Поддерживая концентрацию ионов фосфата и щелочность котловой воды в определенных пределах, можно в значительной степени защитить поверхность металла от накипи. Например, для вспомогательных котлов с рабочим давлением пара до 2 МПа фосфатное число рекомендуется поддерживать в пределах 10-30 мг/л РО34, а щелочное число 150-200 мг/л NaOH. Эти значения рекомендуются при фосфатно-нитратном режиме. Сущность такого режима заключается в обработке воды наряду с фосфатами натриевой селитрой, которая предотвращает агрессивное воздействие на металл избыточной щелочи. При использовании только тринатрийфосфата вода приобретает щелочную реакцию, и щелочность воды постепенно увеличивается.

Увеличение щелочности в результате гидролиза наиболее характерно для котлов с рабочим движением пара в пароводяном барабане выше 2 МПа.

В последние годы в практике эксплуатации котлов для обработки котловой воды применяют препарат ТХ. В его составе около 60 % (по массе) динатрийфосфата примерно 6 % NaOH, также комплексоны (трилон Б) и полимерные добавки. Использование в составе препарата двухзамещенного фосфорнокислого натрия вместо Na3РО4 вызвано стремлением предотвратить появление избыточной щелочности.

Полимерные добавки выполняют роль флокулянта и ускоряют процесс осаждения в шлам накипеобразующих солей жесткости. Трилон Б представляет собой двухзамещенную натриевую соль этилендиаминтетрауксусной кислоты, которая связывает накипеобразующие ионы Са и Mg. При избытке трилона Б в котловой воде идет растворение отложений и создаются условия для образования прочной окисной пленки, состоящей из магнетита Fe3O4.

В последнее время во всех пароходствах в большей или меньшей степени в практике эксплуатации котельных установок применяют зарубежные химические вещества для обработки воды и очистки поверхностей нагрева. В качестве примера таких препаратов могут быть названы следующие:

- AGK-100 - специальная смесь активных веществ в жидкой форме, предназначенная для предотвращения образования накипи, отложений и коррозии как в котлах, так и в паропроводах; препарат применяют для обработки котловой и питательной воды во вспомогательных и утилизационных котлах низкого давления, вводят в магистраль после питательного насоса или в теплый ящик; дозировка препарата должна производиться непрерывно с помощью дозировочного насоса и дозирующего бачка, первоначальная дозировка 5 л на 1 т воды, в дальнейшем суточный расход обычно 1-2 л;

- перолин БВТ-274 - препарат (сухое вещество), препятствующий образованию накипи и коррозии поверхности нагрева; предназначен для водообработки в котлах с рабочим давлением не выше 1,4 МПа; предварительная дозировка 220 г на 1 т воды; в дальнейшем необходимо ориентироваться на значение щелочного числа, которое в этом случае должно поддерживаться в пределах 250-360 мг/л;

- рохэм Уан Шот БВТ - жидкая смесь реагентов, имеющая высокую концентрацию щелочи; используют для обработки воды в котлах низкого давления; первоначальная дозировка 1 л на 1т воды, в процессе эксплуатации вводят в зависимости от фактических значений показателей качества;

- веком BWT QC-3 - темно-коричневая жидкость, полученная на основе нейтрализированных органических кислот и предназначенная для обработки воды в котлах с рабочим давлением до 5 МПа; оказывает комплексное воздействие на качественные показатели котловой воды, защищая металл от кислородной и щелочной коррозии, предотвращая образование накипи и шлама; наилучшие результаты дает непрерывная дозировка препарата с помощью дозировочного насоса; начальная дозировка составляет 0,75 л на 1 т воды в котле, чем обеспечивается щелочность 100-200 мг/л; содержание хлоридов надо поддерживать не выше 200 мг/л; при работе с препаратом необходимо предотвращать попадание его на кожу рук и лица, защищать глаза;

- веком BWT QC-4 - активный поглотитель кислорода, обычно используемый в сочетании с препаратом QC-3; эффективно удаляет кислород в открытых системах питания и препятствует коррозии поверхностей нагрева, частично уносится с паром и способствует образованию защитной пленки на стенках труб конденсатно-питательных магистралей: при этом водородный показатель конденсата поддерживается в пределах 9-10; начальная дозировка 0,2 л на 1 т котловой воды, при нормальных условиях эксплуатации расход препарата около 0,4 л/сут; критерием оценки необходимого количества препарата для обработки котловой воды является значение рН; меры предосторожности должны быть такими же, как при работе с препаратом QC-3.

Водный режим котлов для судов каждой серии разрабатывает бассейновая теплотехническая лаборатория пароходства на основании результатов теплотехнических испытаний, требований Правил технической эксплуатации судовых технических средств с учетом рекомендаций завода - строителя котлов. Водный режим корректируют в зависимости от условий эксплуатации котла по предписанию теплотехнической лаборатории или по согласованию с ее представителем. За соблюдение водного режима несут ответственность старший и котельный механики.

Соблюдение установленных норм водного режима котлов на каждом судне следует регулярно контролировать при помощи специальных приборов и путем периодических химических анализов средствами судовой лаборатории водоконтроля. Объем и периодичность контроля определяются для каждого судна водным режимом. Рекомендации по объему контроля качества питательной и котловой воды содержатся также в ПТЭ.

Качество воды на судах контролируют с помощью лабораторий водоконтроля ЭЛВК-5 (усовершенствованная модель ЛВК-4), КЛВК-1, СКЛАВ-1. Лаборатория ЭЛВК-5 позволяет определить следующие показатели: жесткость общую и карбонатную, мг-экв/л; содержание хлоридов, мг/л; щелочность котловой воды, мг-экв/л; фосфатное и нитратное числа котловой воды, мг/л.

Для установок, имеющих высокие параметры пара, этих показателей недостаточно. Для главных котлов необходимо определять содержание кислорода, растворенного в воде, и во всех установках следует периодически проверять воду на содержание нефтепродуктов.

Кроме указанных приборов, на судах используют экспресс-методы определения отдельных показателей с помощью наборов препаратов, поставляемых зарубежными фирмами.

 

Коррозия в судовых котлах

 

Виды коррозии. В процессе работы элементы парового котла подвергаются воздействию агрессивных сред - воды, пара и дымовых газов. Различают коррозию химическую и электрохимическую.

Химическая коррозия, вызванная паром или водой, разрушает металл равномерно по всей поверхности. Скорость такой коррозии в современных судовых котлах низкая. Более опасна местная химическая коррозия, вызываемая агрессивными химическими соединениями, содержащимися в отложениях золы (серы, окислов ванадия и т. п.).

Наиболее распространенной и опасной является электрохимическая коррозия, протекающая в водных растворах электролитов при возникновении электрического тока, вызванного разностью потенциалов между отдельными участками металла, отличающимися химической неоднородностью, температурой или качеством обработки. Роль электролита выполняют вода (при внутренней коррозии) или сконденсировавшиеся пары воды в отложениях (при наружной коррозии). Возникновение таких микрогальванических пар на поверхности труб приводит к тому, что ион-атомы металла переходят в воду в виде положительно заряженныхионов, а поверхность трубы в этом месте приобретает отрицательный заряд. Если различие в потенциалах таких микрогальванических пар незначительно, то на границе металл-вода постепенно создается двойной электрический слой, который тормозит дальнейший ход процесса. Однако в большинстве случаев потенциалы отдельных участков различны, что обусловливает возникновение ЭДС, направленной от большего потенциала (анода) к меньшему (катоду). При этом с анода в воду переходят ион-атомы металла, а на катоде накапливаются избыточные электроны. В результате ЭДС и, следовательно, интенсивность процесса разрушения металла резко снижаются. Это явление называется поляризацией. Если потенциал анодауменьшается в результате образования защитной оксидной пленки или роста концентрации ионов металла в районе анода, а потенциал катода практически не изменяется, то поляризация носит название анодной.

При катодной поляризации в растворе у катода резко падает концентрация ионов и молекул, способных удалять избыточные электроны с поверхности металла. Из этого следует, что основным моментом борьбы с электрохимической коррозией является создание таких условий, когда будут поддерживаться оба вида поляризации. Практически достигнуть этого невозможно, так как в котловой воде всегда имеются деполяризаторы - вещества, вызывающие нарушение процессов поляризации.

К деполяризаторам относятся молекулы О2 и СО2, ионы Н+, Сl- и SO-4, а также окислы железа и меди. Растворенные в воде СО2, Cl- и SO-4 тормозят образование на аноде плотной защитной оксидной пленки и тем самым способствуют интенсивному протеканию анодных процессов. Ионы водорода Н+ снижают отрицательный заряд катода.

Влияние кислорода на скорость коррозии стало проявляться в двух противоположных направлениях. С одной стороны, кислород увеличивает скорость коррозионного процесса, так как является сильным деполяризатором катодных участков, с другой оказывает пассивирующее действие на поверхность. Обычно детали котла, изготовленные из стали, имеют достаточно прочную первоначальную оксидную пленку, которая защищает материал от воздействия кислорода до тех пор, пока не будет разрушена под действием химических или механических факторов.

Скорость гетерогенных реакций (к которым относится и коррозия) регулируется интенсивностью следующих процессов: подводом к поверхности материала реагентов (в первую очередь деполяризаторов); разрушением защитной оксидной пленки; удалением продуктов реакции от места ее протекания. Интенсивность же этих процессов во многом определяется гидродинамическими, механическими и тепловыми факторами. Поэтому меры по снижению концентрации агрессивных химических реагентов при высокой интенсивности двух других процессов, как показывает опыт эксплуатации котлов, обычно малоэффективны. Отсюда следует, что решение проблемы предотвращения коррозионных повреждений должно быть комплексным, когда учитываются все факторы, влияющие на исходные причины разрушения материалов.

Электрохимическая коррозия. В зависимости от места протекания иучаствующих в реакциях веществ различают следующие виды электрохимической коррозии:

- кислородную (и ее разновидность - стояночную),

- подшламовую (иногда называемую „ракушечной"),

- межкристаллитную (щелочная хрупкость котельных сталей),

- щелевую и

- сернистую.

Кислородная коррозия наблюдается в экономайзерах, арматуре, питательных и опускных трубах, пароводяных коллекторах и внутриколлекторных устройствах (щитах, трубах, пароохладителях и т.п.). Особенно сильно подвержены кислородной коррозии змеевики второго контура двухконтурных котлов, утилизационных котлов и паровых воздухоподогревателей. Кислородная коррозия протекает во время действия котлов и зависит от концентрации кислорода, растворенного в котловой воде.

Скорость кислородной коррозии в главных котлах низкая, что обусловлено эффективной работой деаэраторов и фосфатно-нитратным водным режимом. Во вспомогательных водотрубных котлах она нередко достигает 0,5 - 1 мм/год, хотя в среднем лежит в пределах 0,05 - 0,2 мм/год. Характер повреждения котельных сталей - язвы небольших размеров.

Более опасной разновидностью кислородной коррозии является стояночная коррозия, протекающая в период бездействия котла. В силу специфики работы все судовые котлы (а вспомогательные особенно) подвержены интенсивной стояночной коррозии. Как правило, стояночная коррозия не приводит к отказам котла, однако металл, подвергшийся коррозии во время остановок, при прочих равных условиях более интенсивно разрушается при работе котла.

Основной причиной возникновения стояночной коррозии является попадание кислорода в воду, если котел заполнен, или в пленку влаги на поверхности металла, если котел осушен. Большую роль при этом играют хлориды и NaOH, содержащиеся в воде, и водорастворимые отложения солей.

При наличии в воде хлоридов интенсифицируется равномерная коррозия металла, а если в ней содержится незначительное количество щелочей (меньше 100 мг/л), то коррозия локализуется. Чтобы избежать стояночной коррозии при температуре 20 - 25 °С в воде должно содержаться до 200 мг/л NaOH.

Внешние признаки коррозии с участием кислорода: локальные язвы небольшого размера (Рис. 4.25, а), заполненные продуктами коррозии бурого цвета, которые образуют бугорки над язвами.

Удаление кислорода из питательной воды является одним из важных мероприятий по снижению кислородной коррозии. С 1986 г. содержание кислорода в питательной воде для судовых вспомогательных и утилизационных котлов ограничивается 0,1 мг/л.

Однако и при таком кислородосодержании питательной воды в эксплуатации наблюдаются коррозионные повреждения элементов котла, что свидетельствует о преобладающем влиянии процессов разрушения оксидной пленки и вымывании продуктов реакции из очагов коррозии. Наиболее наглядным примером, иллюстрирующим влияние этих процессов на коррозионные повреждения, являются разрушения змеевиков утилизационных котлов с принудительной циркуляцией.

Рис. 4.25 Повреждения при кислородной коррозии.

Коррозионные повреждения при кислородной коррозии обычно строго локализованы: на внутренней поверхности входных участков (см. Рис. 4.25, а), в районе гибов (Рис. 4.25, б), на выходных участках и в колене змеевика (см. Рис. 4.25, в), а также в пароводяных коллекторах утилизационных котлов (см. Рис. 4.25, г). Именно на этих участках (2 - область пристенной кавитации) гидродинамические особенности потока создают условия для разрушения оксидной пленки и интенсивного вымывания продуктов коррозии. Действительно, любые деформации потока воды и пароводяной смеси сопровождаются возникновением кавитации в пристенных слоях расширяющегося потока 2, где образующиеся и тут же схлопывающиеся пузырьки пара обусловливают разрушение оксидной пленки вследствие энергии гидравлических микроударов. Этому способствуют также знакопеременные напряжения в пленке, вызванные вибрацией змеевиков и колебаниями температуры и давлений. Повышенная же локальная турбулизация потока на этих участках вызывает активное вымывание продуктов коррозии.

На прямых выходных участках змеевиков оксидная пленка разрушается из-за ударов о поверхность капелек воды при турбулентных пульсациях потока пароводяной смеси, дисперсно-кольцевой режим движения которой переходит здесь в дисперсный при скорости потока до 20-25 м/с. В этих условиях даже невысокое кислородосодержание (~ 0,1 мг/л) обусловливает интенсивное разрушение металла, что приводит к появлению свищей на входных участках змеевиков утилизационных котлов типа Ла Монт через 2-4 года эксплуатации, а на остальных участках - через 6-12 лет.

Рис. 4.26 Коррозионные повреждения змеевиков экономайзеров утилизационных котлов КУП1500Р теплохода "Индира Ганди".

В качестве иллюстрации к изложенному рассмотрим причины повреждения змеевиков экономайзеров двух утилизационных котлов типа КУП1500Р, установленных на лихтеровозе «Индира Ганди» (типа "Алексей Косыгин"), который вступил в эксплуатацию в октябре 1985 г. Уже в феврале 1987 г. из-за повреждений заменены экономайзеры обоих котлов. Через 3 года и в этих экономайзерах появляются повреждения змеевиков, расположенные на участках до 1-1,5 м от входного коллектора. Характер повреждений свидетельствует (Рис. 4.26, а, б) о типичной кислородной коррозии с последующим усталостным разрушением (поперечные трещины). Однако природа усталости на отдельных участках различна. Появление трещины (а ранее - растрескивание оксидной пленки) в районе сварного шва (см. Рис. 4.26, а) является следствием знакопеременных напряжений, обусловленных вибрацией пучка труб и конструктивной особенностью узла соединения змеевиков с коллектором (к изогнутому штуцеру диаметром 22x3 приварен конец змеевика диаметром 22x2). Разрушение же оксидной пленки и образование усталостных трещин на внутренней поверхности прямых участков змеевиков, удаленных от входа на 700-1000 мм (см. Рис. 4.26, б), обусловлены знакопеременными термическими напряжениями, возникающими в период ввода котла в действие, когда на горячую поверхность подается холодная вода. При этом действие термических напряжений усиливается тем, что оребрение змеевиков затрудняет свободное расширение металла трубы, создавая дополнительные напряжения в металле.

Подшламовая коррозия обычно наблюдается в главных водотрубных котлах на внутренних поверхностях экранных и парообразующих труб притопочных пучков, обращенных к факелу. Характер подшламовой коррозии - язвы овальной формы с размером по большой оси (параллельной оси трубы) до 30-100 мм. На язвах имеется плотный слой окислов в виде „ракушек" 3 (Рис. 4.27). Подшламовая коррозия протекает в присутствии твердых деполяризаторов - окислов железа и меди 2, которые осаждаются на наиболее теплонапряженных участках труб в местах активных центров коррозии, возникающих при разрушении оксидных пленок. Сверху образуется рыхлый слой накипи и продуктов коррозии 1. Образующиеся „ракушки" из продуктов коррозии прочно сцеплены с основным металлом и могут быть удаленытолько механическим путем. Под „ракушками" ухудшается теплообмен, что приводит к перегреву металла и появлению выпучин. Для вспомогательных котлов этот вид коррозии не характерен, но при высоких тепловых нагрузках и соответствующих режимах водообработки не исключено появление подшламовой коррозии и в этих котлах.

Рис. 4.27 Повреждения парообразующей трубы при подшламовой коррозии.

Щелочная хрупкость металла (межкристаллитная коррозия) появляется в котлах при повышенных концентрациях NaOH в котловой воде в местах высоких местных напряжений (вальцовочных и клепочных соединениях), в трещинах, раковинах и т.п., где при упаривании воды резко возрастает локальная концентрация щелочи, солей и других агрессивных соединений.

По своей природе щелочная хрупкость является частным случаем электрохимической коррозии, протекающей по границам зерен напряженного металла в щелочном концентрате котловой воды.

Рис. 4.28 Схема развития межкристаллитной коррозии (щелочной хрупкости).

Щелочная хрупкость интенсифицируется также водородом, образующимся на катодах, который легко диффундирует в металл, создавая дополнительные напряжения по границам зерен и возникновения микротрещин (Рис. 4.28).

Щелевая коррозия возникает в узких щелях, заполненных электролитом. Такие щели всегда имеются в арматуре котла и в вальцовочных соединениях, в которых вальцовка произведена не на полную толщину стенки трубной доски. В узких щелях обычно затруднены обмен воды и доступ кислорода, поэтому концентрация агрессивных примесей повышена, а кислород распределен по глубине неравномерно, что способствует возникновению замкнутого гальванического элемента и интенсивному протеканию коррозии. Скорость коррозии в значительной степени зависит от размеров щели. В настоящее время нет конструкционных материалов, стойких против щелевой коррозии.

Рис. 4.29 Повреждения труб при наружной коррозии под слоем отложений золы и сажи.

Примером разрушения от электрохимической коррозии может служить также сернистая коррозия труб поверхностей нагрева котла. При температуре дымовых газов ниже точки росы на трубах хвостовых поверхностей нагрева котлов происходит конденсация паров воды, содержащихся в дымовых газах. В образовавшихся капельках воды растворяются содержащиеся в газах окислы серы и образуются слабые растворы кислот, выполняющие роль электролита. Сернистая коррозия может протекать только при температурах ниже точки росы, поэтому при полной нагрузке котла она не опасна. При работе на малых нагрузках и в бездействующем котле имеются благоприятные условия для интенсивного коррозионного разрушения труб. На практике сернистой коррозии (коррозионные язвины 3) подвержены также корневые участки труб пароперегревателей и экранных труб (Рис. 4.29). Появление воды в районе корней труб связано не только с конденсацией паров из газов в период бездействия, но и с обмывом наружных поверхностей труб при чистках. Так как на коллекторе 2 всегда имеются отложения золы 4 (из-за трудности доступа к ним и невозможности полной очистки), то приобмыве труб 1 вода попадает на них, растворяет соединения серы, проникает под слой отложений и создает условия для протекания сернистой коррозии. Методами борьбы с коррозией являются своевременная очистка котлов, применение различных присадок к топливу и сжигание его с малыми избытками воздуха.

Химическая коррозия. При температуре пара выше 500 °С возможна пароводяная коррозия с образованием оксидной пленки и выделением водорода. Наличие оксидной пленки снижает скорость коррозии незначительно, так как диффузия атомов кислорода и металла через пленку продолжается. Интенсивность пароводяной коррозии может быть снижена путем легирования металла хромом, кремнием и алюминием. Применяемые в судовом котлостроении легированные стали отличаются высокой стойкостью против пароводяной коррозии; повреждений труб, вызванных ею, на практике не наблюдается.

Газовая коррозия, представляющая собой процесс окисления стали топочными газами, более опасна. При этом также образуется оксидная пленка, препятствующая дальнейшему развитию коррозии, интенсивность которой зависит от скорости диффузии атомов кислорода через слой окислов и

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...