П. Г. Кузнецов. Глава I. Что такое энергия? Ее сохранение и рассеяние
П. Г. КУЗНЕЦОВ.
С. А. ПОДОЛИНСКИЙ ТРУД ЧЕЛОВЕКА Глава I ЧТО ТАКОЕ ЭНЕРГИЯ? ЕЕ СОХРАНЕНИЕ И РАССЕЯНИЕ
Труд человека и тех животных, к действиям которых приложимо понятие о труде, есть один из многочисленных видов проявления общей мировой энергии. Как ни разнообразны и сбивчивы в настоящее время понятия о труде, мы надеемся, что в таком общем виде наше определение не встретит возражений. Целью нашей будет попытка, выходя из этого общего положения, выяснить значение условий, сопровождающих происхождение труда, представить главнейшие проявления его в жизни организмов и указать на последствия потребления труда, то есть на последствия воздействия трудящихся людей и животных на окружающую природу. Настоящая статья есть не более как введение к такой работе, и потому вопросы эти затрагиваются в ней только самым общим образом. Для более удобного понимания нам необходимо начать с краткого очерка учения об энергии, о родах ее, их взаимных превращениях и о мировом рассеянии энергии. Под словом «энергия» какой-либо системы тел нынешняя наука понимает сумму способностей тел этой системы к каким бы то ни было действиям. «Полная энергия системы тел есть величина неизменная для всех состояний, в которые эта система может быть последовательно приведена взаимными действиями различных ее точек». «Полная энергия какой-либо конечной системы есть величина конечная» 1. Так как все действия тел обусловливаются которою-либо из физических сил, то, следовательно, энергия и представляет собой сумму всех физических сил, заключающихся в данной системе тел. Обыкновенно принимают существование семи различных физических сил: теплоты, света, электричества, магнетизма, химического сродства, частичных сил и всемирного тяготения 2. Сумма этих семи сил, заключающихся в какой-либо уединенной системе тел, то есть такой системе, которая не подвергается никаким внешним влияниям, равна энергии этой системы и представляет собой величину абсолютно не-
1 См. Verdet. Theorie mecanique de la chaleur. T. I, p. 4—16. 2 Секки. Единство сил, стр. XXX.
изменную. Примером такой уединенной системы может служить вселенная, количество энергии которой есть величина вечно неизменная. Закон сохранения энергии, в сущности, есть не более как недавнее обобщение давно известного закона механики, начало которому положено еще Гюйгенсом в его предположении, что общий центр тяжести группы тел, колеблющихся под влиянием тяготения около горизонтальной оси, может подняться до своей первоначальной высоты, но не выше ее 1. Это положение, принятое в начале за аксиому, стало впоследствии зародышем той общей идеи, из которой Лейбниц развил принцип сохранения живой силы. Еще более общий вид этому закону был придан Лагранжем, выразившим его в той форме, что сумма виртуальных (возможных) действий системы, находящейся в равновесии, равняется нулю 2. Закон этот, выведенный первоначально для механики, то есть для непосредственно ощущаемого человеком движения, был применен впоследствии ко всем родам энергии, как только с открытием механической теории тепла была доказана превратимость всех физических сил, всех форм энергии, одних в другие. Такое широкое обобщение было значительно облегчено тем обстоятельством, что в настоящее время все физические силы уже сведены или сводятся на различные формы движения, к которым вполне приложимы законы, выработанные механикой. Теплота, свет, электричество, магнетизм, химическое сродство и частичные силы представляются нам теперь уже не иначе, как под видом колебательных или иных движений мельчайших частиц веществ. Одно тяготение стоит пока в стороне, так как многие принимают его еще за коренное свойство материи, способное обнаруживать свое действие на расстоянии, непосредственно, вопреки ныне известным законам механики. Но и для тяготения теперь уже существуют теории, объясняющие более или менее удовлетворительно все явления его предположением движения мельчайших частиц и непосредственными толчками их о тяготеющие тела; такова, между прочим, известная теория Лесажа 3. Рано или поздно одна из подобных теорий, вероятно, будет принята, и тогда, по справедливому замечанию Тэта4, мы должны будем признать все роды энергии в конце концов кинетическими, т. е. представляющими собой движение. В различных родах энергии эти движения отличаются между собой, вероятно, только скоростями и кривыми путей, проходимыми движущимися частицами вещества. Тем не менее с практической точки зрения теперь еще выгодно поддерживать различие, существующее между общепринятыми понятиями энергии кинетической и потенциальной. Различие это, совершенно не существенное, если действительно все проявления энергии основаны на движение мельчайших частиц вещества, — очень важно для нас, потому что в тех случаях, где мы имеем кинетическую энергию, движение непосредственно доступно нашему ощущению, например, в текущей воде, падающей лавине, работающей паровой машине, снаряде, выброшен-
1 Dü hring. Kritische Geschichte der allgemeinen Principien der Mechanik, 1873, стр. 120. 2 Dü hring, l. с., стр. 318. 3 Le Sage. Lucrè ce Newtonien Memoires de Berlin, 1782 и Prevost. Deux traité s de Physique mé canique. Geneve, 1818. 4 Тэт. О новейших успехах физических знаний. 1877, стр. 328. ном из орудия, в движении Луны вокруг Земли и т. д. Напротив, в потенциальной энергии движение вещества, хотя также существует, но еще не приняло формы, доступной нашему ощущению, хотя и может принять ее при известных обстоятельствах. Лавина, нависшая над обрывом, паровая машина, нагретая, но еще не работающая, заряженная пушка, пища человека, еще не превращенная в мышечное сокращение при работе, — вот примеры потенциальной энергии.
Мы уже сказали, что сумма энергии всей вселенной есть величина абсолютно неизменная, но нельзя сказать то же о различных частях вселенной. Мы не будем входить уже теперь в рассмотрение атомистических теорий, но из самого того факта, что некоторые небесные тела передают различные виды энергии в большом количестве через мировое пространство другим небесным телам, мы вправе заключить, что эти небесные тела, солнца, содержат в себе сравнительно больше энергии, чем мировое пространство и те небесные тела, планеты и спутники, которые получают энергию под видом тепловых, световых, химических лучей, магнетизма и т. п. от ближайших к ним солнц. Несомненно, что такая постоянная передача энергии из мест, обладающих большим ее запасом, в другие места, где ее менее, должна через очень долгий период времени повести к повсеместному уравнению энергии. Но этого мало. Не следует забывать, что все колебания, которыми совершается уравновешение энергии между различными небесными телами и мировым пространством, неоднократно сопровождаются превращениями энергии одного рода в энергию другого. Свет нередко превращается в химическое действие, которое в свою очередь часто дает свет и тепло. Но не все роды энергии одинаково легко превращаются в другие, и всякий раз, когда происходит такое превращение, в энергии появляется наклонность переходить, по крайней мере, частью, от легко видоизменяемой формы, например, движения, к форме, которая видоизменяется с бó лыпим трудом, например, теплоте. Таким образом, энергия вселенной постоянно переходит от легко превратимых форм к более устойчивым, и, вследствие этого, возможность превращений в ней постоянно уменьшается. После долгого промежутка веков вся энергия примет форму, уже неспособную к превращениям, которая будет состоять в теплоте, равномерно распространенной по всей вселенной. В таком случае всякая жизнь и всякое ощутимое нами движение, по-видимому, должны прекратиться, так как известно, что для превращения теплоты в какую бы то ни было другую форму энергии совершенно необходимо иметь тела различной температуры 1. Это стремление мировой энергии к повсеместному уравновешению называется рассеянием анергии, или, по Клаузиусу, энтропией 2. Под этим именем Клаузиус понимает величину уже превращенной энергии, то есть поставленной в такие условия, что она уже не совершает обратных превращений. Такова, например, теплота, рассеянная в мировом пространстве. Отсюда становятся понятными основные положения Клаузиуса: 1) энергия вселенной постоянна; 2) энтропия вселенной стремится достигнуть максимума 3.
1 W. Thomson. О всеобщем стремлении в природе к рассеянию энергии. Цитир. у Тэта, 1. с., стр. 19. 2 Clausius. Theorie mecanique de la chaleur. 1868. Т. I, стр. 411. 3 Clausius, l. с., т. I, стр. 420. Теория рассеяния энергии, выраженная Томсоном и Клаузиусом, вызвала возражения со стороны Ранкина 1, который предположил, что вселенная может со всех сторон быть окружена абсолютно пустым пространством, от вогнутой поверхности которого равномерно распространенная теплота вселенной будет сполна отражаться и затем собираться в фокусах с высшей температурой, способной произвести в успокоившейся вселенной ряд обратных превращений. На это Клаузиус возразил, доказывая, что отраженное тепло, даже собранное в фокус, никогда не может превзойти температуры своего источника2. Таким образом, пока не явится новых возражений, закон рассеяния энергии можно считать настолько же доказанным, как и закон ее сохранения. Понятно, что если такова судьба всей энергии, обладающей высокой температурой, то легко представить себе, что совершится и с ощутимым нами движением во вселенной. Все пространство мира наполнено веществом, хотя очень редким, но достаточным для того, чтобы в конце концов уравнять всякое различие в движении, так же точно, как оно стремится уравнять и всякое различие в температуре. Таким образом, мир должен превратиться в массу, равномерно нагретую и совершенно неспособную производить какую-либо ощутимую работу, так как последнее возможно только при существовании различий в температурах. Таким образом, только в чисто механическом смысле энергия вполне сохраняется. Но эта уравновешенная энергия уже неспособна давать начало разнообразным явлениям, в том числе неспособна поддерживать жизни организмов. Они существуют не самой энергией, а ее превращениями, а в энергии, превращенной в равномерную теплоту, нет ни малейшего повода к началу каких бы то ни было процессов, в том числе и жизненных. Превращенная энергия представляется как бы негодным остатком мировой деятельности, накопляющимся из года в год все более и более. В настоящее время накопление этого остатка еще не очень заметно, но никто не может поручиться, что со временем оно не станет очень значительным и для нашего ощущения3.
Для того, чтобы нагляднее показать, что при полном уравновешении температуры и прочих физических сил, т. е. насыщении химического сродства и пр., не может проявляться никакого движения, — приведем следующее рассуждение Пуассона, ясно показывающее, что никакая система тел, находящихся в равновесии, не может выйти из него, если всякие внешние влияния на эту систему совершенно устранены: «Животное, как бы оно ни старалось, никогда не может переместить свой центр тяжести при помощи одной своей воли, без всякой внешней точки опоры. Человек и животное могут в вертикальном направлении опускать или поднимать свой центр тяжести, опираясь на землю. Они могут также двигаться в горизонтальном направлении при помощи трения о ее поверхность, но всякое передвижение станет для них невозможным, если их поместить на плоско- 1 Rankine. Philosoph. Magaz. Serie 4. Т. IV. 2 Clausius, 1. с., т. I, стр. 346. 3 Balfour-Stuart. Conservation de 1'é nergie. 1875, стр. 157.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|