Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Конденсаторы и индуктивные элементы




Диффузионные конденсаторы. В качестве конденсаторов интегральных микросхем часто используют барьерную емкость p-n-перехода, смещенного в обратном направлении. Такой пассивный элемент интегральной микросхемы удобно формировать одновременно с формированием транзисторных структур или использовать непосредственно p-n-переходы транзисторных структур (рис. 4.21). Барьерная емкость p-n-перехода может быть использована как для создания конденсатора постоянной емкости, так и для конденсатора переменной емкости, которой можно управлять путем изменения постоянного смещения на переходе.

Качество диффузионных конденсаторов, как и других конденсаторов, и их пригодность для применения в интегральных микросхемах необходимо оценивать по их технологической совместимости с технологией других (в первую очередь активных) элементов интегральных микросхем и по таким основным параметрам, как диапазон номинальных значений емкости (или удельная емкость), пробивное напряжение, добротность, допуски по емкости.

Диапазон номинальных значений емкости диффузионных конденсаторов, которые могут быть сформированы на отведенных для них площадях монокристалла полупроводника, определяется концентрацией примесей в прилегающих к переходу областях. Диффузионные конденсаторы, использующие эмиттерную емкость транзисторной структуры, имеют большую удельную емкость по сравнению с конденсаторами на коллекторном переходе.

Однако при большой концентрации примесей в прилегающих к переходу областях и, следовательно, при малой толщине перехода будет мало пробивное напряжение такого перехода, а значит, и диффузионного конденсатора. Таким образом, удельную емкость и пробивное напряжение диффузионных конденсаторов надо рассматривать совместно. Взаимосвязь между этими параметрами оказывается неблагоприятной для диффузионных конденсаторов.

Добротность — величина, обратная тангенсу угла диэлектрических потерь диффузионных конденсаторов, обычно значительно ниже добротности дискретных конденсаторов с диэлектрической изоляцией. Однако стоимость формирования диффузионных конденсаторов мала, так как они создаются в едином технологическом процессе с другими элементами интегральной микросхемы. Поэтому диффузионные конденсаторы широко используют в интегральных микросхемах, когда можно мириться с низкой добротностью.

Диффузионный конденсатор, как и другие элементы интегральной микросхемы, должен быть изолирован от остальных элементов и от подложки интегральной микросхемы. Часто эта изоляция осуществляется p-n-переходом. Поэтому при формировании диффузионного конденсатора одновременно образуется и структура паразитного транзистора, эмиттером которого является одна из областей (обкладок) диффузионного конденсатора, базой – другая область (обкладка), коллектором – подложка (рис. 4.21).

МДП-конденсаторы. В качестве диэлектрика такого конденсатора используют слой диоксида кремния, которым покрыт кристалл полупроводника (рис. 7.14). Одной обкладкой конденсатора является слой металла (обычно алюминия), нанесенный на поверхность слоя диоксида кремния одновременно с созданием межэлементных соединений и контактных площадок; другой обкладкой — сильнолегированная область полупроводника, которая формируется одновременно с формированием эмиттерных областей транзисторных структур интегральных микросхем. Таким образом, процесс изготовления МДП-конденсаторов также не требует проведения дополнительных операций для их формирования.

В островке, предназначенном для МДП-конденсатора, не формируют базовую область транзисторной структуры, т. е. не проводят диффузию примесей для создания базовой области. Поэтому под МДП-конденсатором есть только один p-n-переход между коллекторной областью транзисторной структуры и подложкой, который необходим для изоляции МДП-конденсатора от других элементов, расположенных на одной с ним полупроводниковой пластине.

Следует отметить, что емкость МДП-конденсатора может иметь сложную зависимость от напряжения постоянного смещения и от частоты переменного напряжения. Связано это с возможностью образования у поверхности полупроводника (в данном примере у поверхности n+-области) обедненных и инверсных слоев под действием проникающего в полупроводник электрического поля. Частотная зависимость емкости МДП-конденсатора может появиться, если в полупроводнике образуется инверсный слой, в котором накопление и рассасывание неосновных для исходного полупроводника носителей заряда происходят в результате процессов тепловой генерации и рекомбинации, а инерционность этих процессов может быть велика.

Пленочные конденсаторы. Пленочные конденсаторы формируют на диэлектрической подложке гибридных интегральных микросхем. При этом необходимо провести по крайней мере три операции вакуумного напыления: нижней проводящей обкладки конденсатора, диэлектрической пленки и верхней проводящей обкладки (рис. 4.24). Такой пленочный конденсатор называют однослойным. Для получения большей емкости или для уменьшения площади, занимаемой конденсатором на подложке, можно делать многослойные пленочные конденсаторы, секции которых располагают «этажами» – одна над другой. Однако создание «многоэтажных» конденсаторов затрудняет процесс их изготовления, так как надо вводить дополнительные операции нанесения различных слоев, повышает стоимость, уменьшает надежность, увеличивает процент брака из-за увеличения краевого эффекта, уменьшения плотности и электрической прочности верхних диэлектрических слоев.

В качестве диэлектрика пленочных конденсаторов могут быть использованы различные материалы, но наиболее широко применяется монооксид кремния.

Индуктивности. Пленочные индуктивные элементы представляют собой плоские прямоугольные или круглые спирали 1 (рис. 4.25, а, б),формируемые на основе тех же пленок, что и проводники. Для изоляции центрального вывода в структуре на рис. 4.25, а применен диэлектрический слой 2. Его толщина определяет паразитную емкость между центральным выводом и витками спирали. Паразитная емкость снижается, если вывод сделать в виде проволочной перемычки (см. рис. 4.25, б), но это увеличивает площадь. При ширине проводника и расстоянии между витками 30... 50 мкм удельная индуктивность 10... 20 нГн/мм2. Элементы с индуктивностью 0,1... 1 нГн, необходимые в СВЧ-микросхемах, имеют кольцевую структуру, показанную на рис. 4.25, в.Индуктивность, имеющая размерность нГн, , где и выражаются в миллиметрах. Необходимо, чтобы длина проводника, образующего виток, была много меньше длины волны (). Например, при ~ 200 мкм, = 20 мкм получим L=0,3 нГн. Из-за большой длины проводника, образующего кольцо (или спираль), его сопротивление велико, поэтому снижается добротность . Для проводника с = 0,02 Ом/* имеем = 0,63 Ом и Q = 3 при = 1 ГГц.

Литература

1. Аваев Н.А., Наумов Ю.Е., Фролкин В.Т. Основы микроэлектроники. – М.: Радио и связь, 1991

2. Степаненко И.П. Основы микроэлектроники: Учебное пособие для вузов. – 2-е изд., перераб. и доп. - М.: Лаборатория Базовых Знаний, 2001.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...