Специальные реляционные операции
В этом подразделе мы несколько подробнее рассмотрим специальные реляционные операции реляционной алгебры: ограничение, проекция, соединение и деление. Операция ограничения Операция ограничения требует наличия двух операндов: ограничиваемого отношения и простого условия ограничения. Простое условие ограничения может иметь либо вид (a comp-op b), где а и b - имена атрибутов ограничиваемого отношения, для которых осмысленна операция сравнения comp-op, либо вид (a comp-op const), где a - имя атрибута ограничиваемого отношения, а const - литерально заданная константа. В результате выполнения операции ограничения производится отношение, заголовок которого совпадает с заголовком отношения-операнда, а в тело входят те кортежи отношения-операнда, для которых значением условия ограничения является true. Пусть UNION обозначает операцию объединения, INTERSECT - операцию пересечения, а MINUS - операцию взятия разности. Для обозначения операции ограничения будем использовать конструкцию A WHERE comp, где A - ограничиваемое отношение, а comp - простое условие сравнения. Пусть comp1 и comp2 - два простых условия ограничения. Тогда по определению: · A WHERE comp1 AND comp2 обозначает то же самое, что и (A WHERE comp1) INTERSECT (A WHERE comp2) · A WHERE comp1 OR comp2 обозначает то же самое, что и (A WHERE comp1) UNION (A WHERE comp2) · A WHERE NOT comp1 обозначает то же самое, что и A MINUS (A WHERE comp1) С использованием этих определений можно использовать операции ограничения, в которых условием ограничения является произвольное булевское выражение, составленное из простых условий с использованием логических связок AND, OR, NOT и скобок. На интуитивном уровне операцию ограничения лучше всего представлять как взятие некоторой "горизонтальной" вырезки из отношения-операнда.
Операция взятия проекции Операция взятия проекции также требует наличия двух операндов - проецируемого отношения A и списка имен атрибутов, входящих в заголовок отношения A. Результатом проекции отношения A по списку атрибутов a1, a2,..., an является отношение, с заголовком, определяемым множеством атрибутов a1, a2,..., an, и с телом, состоящим из кортежей вида <a1:v1, a2:v2,..., an:vn> таких, что в отношении A имеется кортеж, атрибут a1 которого имеет значение v1, атрибут a2 имеет значение v2,..., атрибут an имеет значение vn. Тем самым, при выполнении операции проекции выделяется "вертикальная" вырезка отношения-операнда с естественным уничтожением потенциально возникающих кортежей-дубликатов. Операция соединения отношений Общая операция соединения (называемая также соединением по условию) требует наличия двух операндов - соединяемых отношений и третьего операнда - простого условия. Пусть соединяются отношения A и B. Как и в случае операции ограничения, условие соединения comp имеет вид либо (a comp-op b), либо (a comp-op const), где a и b - имена атрибутов отношений A и B, const - литерально заданная константа, а comp-op - допустимая в данном контексте операция сравнения. Тогда по определению результатом операции сравнения является отношение, получаемое путем выполнения операции ограничения по условию comp прямого произведения отношений A и B. Если внимательно осмыслить это определение, то станет ясно, что в общем случае применение условия соединения существенно уменьшит мощность результата промежуточного прямого произведения отношений-операндов только в том случае, когда условие соединения имеет вид (a comp-op b), где a и b - имена атрибутов разных отношений-операндов. Поэтому на практике обычно считают реальными операциями соединения именно те операции, которые основываются на условии соединения приведенного вида.
Хотя операция соединение в нашей интерпретации не является примитивной (поскольку она определяется с использованием прямого произведения и проекции), в силу особой практической важности она включается в базовый набор операций реляционной алгебры. Заметим также, что в практических реализациях соединение обычно не выполняется именно как ограничение прямого произведения. Имеются более эффективные алгоритмы, гарантирующие получение такого же результата. Имеется важный частный случай соединения - эквисоединение и простое, но важное расширение операции эквисоединения - естественное соединение. Операция соединения называется операцией эквисоединения, если условие соединения имеет вид (a = b), где a и b - атрибуты разных операндов соединения. Этот случай важен потому, что (a) он часто встречается на практике, и (b) для него существуют эффективные алгоритмы реализации. Операция естественного соединения применяется к паре отношений A и B, обладающих (возможно составным) общим атрибутом c (т.е. атрибутом с одним и тем же именем и определенным на одном и том же домене). Пусть ab обозначает объединение заголовков отношений A и B. Тогда естественное соединение A и B - это спроектированный на ab результат эквисоединения A и B по A/c и BBC. Если вспомнить введенное нами в конце предыдущей главы определение внешнего ключа отношения, то должно стать понятно, что основной смысл операции естественного соединения - возможность восстановления сложной сущности, декомпозированной по причине требования первой нормальной формы. Операция естественного соединения не включается прямо в состав набора операций реляционной алгебры, но она имеет очень важное практическое значение.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|