Основные сведения о цепях синусоидального тока
Перед выполнением лабораторных работ, посвящённых исследованию цепей синусоидального тока, весьма полезным является изучение соответствующих разделов по лекциям или учебникам. Данный раздел не претендует на выполнение этой цели и служит для первоначального знакомства с основными понятиями и элементами цепей синусоидального тока.
Формы представления синусоидальных напряжений, ЭДС и токов
Допустим, что имеем некоторую цепь, в которую включены источники питания (источники ЭДС или источники тока), вырабатывающие синусоидальную ЭДС или синусоидальный ток одной частоты, а также приёмники (резисторы, катушки индуктивности, конденсаторы). Для того, чтобы экспериментально или теоретически изучить режим работы такой цепи (а может быть и область возможных режимов работы), необходимо, прежде всего, уяснить, каким образом представлять синусоидально изменяющиеся во времени параметры режимов работы этой цепи. Т.е., иными словами, в какой форме представлять синусоидальные напряжения, ЭДС или ток для того, чтобы с этими представлениями можно было удобно и наглядно проводить расчёты или измерения. Известно, что любую функцию можно представить в аналитической, графической и табличной формах. Широко распространенные ранее таблицы значений sin x (x изменяется от 0 до 90 угловых градусов) в настоящее время вытеснены в результате массового производства микрокалькуляторов. Поэтому табличное представление указанных величин в практике расчётов по электротехнике в настоящее время не используется. Как следует из определения, аналитическая форма представления указанных параметров режимов может быть записана в виде:
Для уяснения смысла всех параметров, указанных в (1), приведём графическую форму представления синусоидальных величин (рис.1) и составим эти формы.
Рис. 1.
в противном случае
Поэтому количественно начальная фаза Аргумент синусоидальной величины
Для того чтобы анализировать многозначные синусоидально изменяющиеся функции, их принято рассматривать на участке вдоль оси абсцисс с полным циклом изменения фазы колебаний. Такой участок называется периодом колебаний и определяется как минимальный промежуток времени (или минимальное расстояние вдоль оси абсцисс) между двумя одинаковыми значениями синусоидальной функции. Период Величину обратную периоду колебаний Циклическая частота Также важным параметром является угловая частота колебаний
Весьма важным понятием в электротехнике является разность фаз
Аналогично разность фаз между
Следует помнить, что поскольку начальная фаза есть величина алгебраическая, то разность фаз также величина алгебраическая. И ещё одно важное обстоятельство. Начальная фаза колебаний зависит от момента времени, принятого за начало отсчёта Как видно, аналитическая и графическая формы представления синусоидальных величин определяется сравнительно большим числом параметров, поэтому они не нашли применения в расчетах и используются, преимущественно, для наглядного представления результатов расчёта или измерения. Необходимость оценки или измерения синусоидальных ЭДС, напряжений и токов с помощью одного какого-либо параметра привела к появлению различных эквивалентов. Наибольшее распространение получило действующее значение синусоидального тока, которое является его тепловым эквивалентом и определяется такой величиной постоянного тока, который производит такой же тепловой эффект, что и оцениваемый синусоидальный ток, протекая через тот же
где
Следует заметить, что этот эквивалент для синусоидальных напряжений и ЭДС не имеет конкретного физического смысла, как для тока, так и для напряжения. Действующее значение синусоидального тока, напряжения или ЭДС нашло широкое применение в измерительной технике. Многие измерительные приборы (вольтметры, амперметры), используемые в электротехнических измерениях, проградуированы в действующих значениях напряжения и тока. Несмотря на это данный эквивалент не может однозначно описать указанные синусоидальные величины, поскольку ничего не говорит о фазе колебаний. Как будет показано в дальнейшем, одинаковые действующие значения синусоидального тока и напряжения при различной величине сдвига фаз между ними обеспечиваются различными энергетическими явлениями в цепи. Поэтому только использование действующего значения оказывается явно недостаточным при расчетах. Попытки преодолеть указанные недостатки привели к представлению синусоидальных функций времени их изображением в виде вращающихся радиус-векторов в декартовой плоскости координат. На рис.2 представлен радиус-вектор
Рис. 2. На основании приведённых построений можно утверждать, что между вращающимся радиус-вектором и некоторой синусоидальной функцией времени существует взаимно однозначное соответствие. А именно, любому равномерно вращающемуся радиус-вектору однозначно соответствует некоторая синусоидальная функция времени. И, наоборот, любая синусоидальная функция времени может быть условно изображена однозначно соответствующим ей вращающимся радиус-вектором, длина которого равна амплитудному значению синусоиды, а начальное положение относительно оси Такое представление синусоидальных функций времени может быть использовано в расчётах цепей переменного тока. Допустим, для некоторого узла электрической цепи по первому закону Кирхгофа можно записать уравнение:
или
При этом для
Путём элементарных тригонометрических преобразований можно показать, что сумма двух синусоид одинаковой частоты
Если воспользоваться аналитическим представлением синусоидальных токов
Как видно, решение задачи получается громоздким даже в том случае, когда суммируются только две функции, в то время как задачи электротехники очень часто требуют суммирования нескольких величин. Ещё боле громоздким и к тому же менее точным получается решение этой задачи, если её проводить для графического представления синусоидальных величин (рис.1). В этом случае необходимо предварительное построение графиков заданных токов
Проведём решение задачи с помощью радиус-векторов
Рис. 3.
Учитывая, что
получим, что для модуля В электротехнике принято такие диаграммы строить для момента времени Такую совокупность радиус-векторов, отображающих синусоидальные величины одной и той же частоты при Расчёты с использованием изображающих векторов просты и наглядны, однако обладают существенным недостатком, присущим всем графическим методам, – ограниченной точностью. В конце XIX века Ч. П. Штейнмецем и А.Е. Кеннели был предложен символический метод расчёта, основанный на представлении синусоидальных напряжений, токов и ЭДС в виде векторов на комплексной плоскости. Комплексные изображения позволяют совместить простоту и наглядность векторных диаграмм с возможностью проведения точных аналитических расчётов. Некоторый вектор, изображающий синусоидальную функцию времени в декартовой плоскости, перенесём на комплексную плоскость, для чего совместим ось x с осью действительных чисел, а ось y с осью мнимых чисел (рис.4). Если при замене координат мы сохраним все условия изображений, о которых было сказано выше, то такой перенос даёт возможность аналитического выражения радиус-вектора.
Рис. 4. Комплексный вектор принято обозначать в виде алгебраической
тригонометрической
показательной
Здесь символом
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|