Участок цепи с резистивным элементом
Резистивным (или -элементом) называют такой элемент схемы замещения (расчетной схемы), который способен лишь безвозвратно потреблять энергию электрического тока, преобразуя её в неэлектрические виды энергии (например, в тепловую с рассеянием её в окружающее пространство). Другими энергетическими свойствами эта модель не обладает. Её реальными прообразами являются, например, нагревательные элементы электрической печи, лампы накаливания, а также специальные элементы электронных схем – резисторы. Однако эти прообразы обладают многими другими физическими свойствами, не являющимися для них основными, поэтому в модели эти свойства не учитываются. Преобразование энергии на резистивном элементе происходит в результате того, что он оказывает сопротивление протекающему через него электрическому току. Количественной мерой такого сопротивления служит параметр резистивного элемента, обозначаемый и и называемый электрическим сопротивлением. Этот параметр измеряется в Омах. Для резистивного элемента его параметр , протекающий через него ток и падение напряжения на выводах этого элемента (рис.5) связаны законом Ома:
Рис. 5.
; (29) . (30) Величина – называется проводимостью резистивного элемента. Единицей измерения служит сименс. Если и не зависит от и , то резистивный элемент – линейный и как видно из (29), зависимость тока от времени будет подобна зависимости от времени напряжения. Мгновенная мощность для цепи с резистивным элементом:
или, учитывая (29), получим .
Мгновенная мощность, как скорость изменения электрической энергии на рассматриваемом участке цепи, измеряется в ваттах (Вт).
Пусть через резистивный элемент протекает синусоидальный ток:
. Выберем (рис.5) положительные направления для и совпадающими, тогда в соответствии с (29) можно записать
. (31) Из (31) видно, что . Т.е. в цепи с линейным резистивным элементом при синусоидальном токе падение напряжения на этом элементе также синусоидально и совпадает по фазе с током (рис.6). Из (31) можно записать закон Ома для амплитудных и, учитывая, что и , для действующих значений напряжения и тока: . (32) Можно записать (32) в комплексной форме. Для этого перейдем от синусоидальных и к однозначно соответствующим им комплексам действующих значений
; .
Рис. 6. Если , тогда , но согласно (32) . Следовательно, или (33) Соотношение (33) представляет собой закон Ома для участка цепи с резистивным элементом в комплексной форме Построим векторную диаграмму для данного участка цепи (рис.7). Рис. 7. Построение начинаем с выбора масштабов по току (А/см) и напряжению (В/см). Затем строим заданный вектор тока. Для этого откладываем от оси угол в соответствии с его знаком (против часовой стрелки, т.к. см. рис.6) и проводим луч . На этом луче в масштабе откладываем отрезок длиной (см) от т.0 ( – действующее значение тока). Другой конец отрезка обозначаем стрелкой. Вектор построен. Поскольку , то вектор напряжения будет также лежать на луче . Для построения вектора от т.0 в масштабе откладываем отрезок равный (см), другой конец отрезка отмечаем стрелкой. Вектор построен ( – действующее значение напряжения). На этом завершается построение диаграммы для данного участка цепи.
Рассмотрим энергетические процессы, протекающие в цепи с -элементом. Тот факт, что ток и напряжение в цепях синусоидального тока в течение периода изменяют своё направление на противоположное, не лишает смысла наличия стрелок положительных направлений (рис.5): истинное направление тока (напряжения) совпадает со стрелкой в те моменты, когда и противоположно стрелке, если . Важно то, что на линейном резистивном элементе напряжение и ток всегда совпадают по направлению. Тогда мгновенная мощность будет всегда величиной положительной (рис. 6), т.е. -элемент только потребляет электрическую энергию от источника и преобразует её в другие неэлектрические виды. Определим зависимость
(34) . Т.о. с течением времени мощность колеблется с частотой в пределах от до вокруг среднего значения, равного (рис.6), и в любой момент времени . Среднее значение мощности за период называют активной мощностью и обозначают буквой . (35) С учётом (22) выражение (25) можно записать в виде . (36)
Активная мощность не только на участке цепи с -элементом, но и в целом в любой цепи характеризует работу, совершаемую электрической энергией за период, т.е. определяет энергию , необратимо преобразующуюся в другие неэлектрические виды энергии: . На рис.6 этой работе соответствует заштрихованная площадь, ограниченная кривой и осью абсцисс. Единицей измерения активной мощности является Ватт/Вт/.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|