Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Митохондрии — ангелы смерти




 

Только что описанные представления сложились к середине 1990-х гг. Никакие из них не были опровергнуты. Тем не менее за последнее время интерпретация накопленных фактов настолько изменилась, что сложившаяся в 1990-е гг. парадигма подверглась революционным изменениям. С точки зрения этой парадигмы ядро клетки представляет собой ее операционный центр, и оно же контролирует ее судьбу. Во многих отношениях, конечно, так и есть, но в случае апоптоза это не так. Живительно, но клетки, лишившись ядра, сохраняют способность к апоптозу. Принципиально новым было открытие того факта, что судьбу клетки контролируют митохондрии. Именно они решают, жить ей или умереть.

Машину смерти можно привести в действие двумя способами. Раньше они казались очень разными, но последние исследования находят у них некоторые общие черты. Первый механизм называется внешним путем апоптоза, потому что сигнал к запуску машины смерти подается извне, через «рецепторы смерти» на внешней стороне клеточной мембраны. Например, активированные иммунные клетки производят химические сигналы (такие, как факторы некроза опухоли), связывающиеся с «рецепторами смерти» раковых клеток, находящихся на начальных стадиях трансформации. «Рецепторы смерти» передают в клетку сигнал, который активирует каспазы и вызывает апоптоз. Было понятно, что многие подробности нуждаются в уточнении, но казалось, что картина в общем и целом ясна. Ничего подобного!

Второй механизм запуска машины смерти называется внутренним путем апоптоза. Как следует из названия, толчок к самоубийству приходит изнутри и обычно связан с повреждением клетки. Например, повреждение ДНК в результате ультрафиолетового облучения активирует внутренний путь, приводя к апоптозу клетки без какого-либо внешнего сигнала. Были найдены сотни триггеров внутреннего пути апоптоза, которые не действуют через «рецепторы смерти», а непосредственно повреждают клетку. Они потрясающе разнообразны. Апоптоз вызывают многие токсины и вещества, загрязняющие окружающую среду, а также некоторые лекарства, использующиеся в химиотерапии рака. Вирусы и бактерии тоже могут вызывать апоптоз. Это особенно хорошо видно в случае СПИДа, когда погибают сами иммунные клетки. Вызывают апоптоз и многие стрессовые факторы: перегрев, переохлаждение, воспаление, оксидативный (или окислительный) стресс. Клетки могут совершать апоптоз после сердечного приступа, инсульта или трансплантации органа. Все эти разнообразные пусковые механизмы независимо приводят к одному и тому же результату — активации каскада каспаз, и поэтому характер апоптоза во всех этих случаях очень похож. Надо полагать, сигналы каким-то образом сходятся к одному и тому же «выключателю», который переводит фермент каспазу из неактивной формы в активную. Эта биохимическая задача специфична как замок и подходящий к нему ключ. Но что, спрашивается, может распознать разные сигналы, оценить их силу и направить их по единому пути одним поворотом ключа — активацией каскада каспаз?

Половину ответа дали в 1995 г. Науфал Замзами и его коллеги, работавшие в составе исследовательской команды Гвидо Кремера в Национальном центре научных исследований (Вильжюиф, Франция). Две публикации этой группы в «Журнале экспериментальной медицины» стали одними из самых цитируемых работ в области медицинских исследований. Некоторые факты тогда уже указывали на то, что митохондрии вовлечены в апоптоз, но группа Кремера доказала, что митохондрии играют в этом процессе ключевую роль. В частности, они показали, что одним из главных триггеров апоптоза является деполяризация внутренней митохондриальной мембраны (см. часть 2 книги). Если мембранный потенциал на некоторое время утрачивается, клетки всегда совершают апоптоз. Во второй статье группа Кремера показала, что этот процесс состоит из двух этапов. За деполяризацией мембраны следует резкое увеличение числа свободных радикалов, которое, по-видимому, нужно для перехода к следующей стадии апоптоза.

Такой двухтактный ход — деполяризация митохондриальной мембраны и выброс свободных радикалов — является реакцией практически на все внутренние триггеры. Иными словами, митохондрии являются и сенсорами, и передатчиками самых разнообразных сигналов при повреждении клетки. Достаточно перенести апоптотические митохондрии в нормальную клетку, и ее ядро фрагментируется, а клетка погибнет. Напротив, заблокировав «двухтактный ход», можно задержать или даже предотвратить апоптоз. Однако оставался вопрос: как апоптотические митохондрии взаимодействуют с клеткой? В частности, как они активируют каспазы?

На этот вопрос ответила группа Сяолун Ванга из Университета Эмори (Атланта, Джорджия) в 1996 г. Как выразился один специалист, ответ вызвал «всеобщее остолбенение». Он гласил: «цитохром с». Если помните, мы встречались с ним в части 2. Этот белок, открытый Дэвидом Кейлином в 1930 г., является компонентом дыхательной цепи и отвечает за перенос электронов от комплекса III к комплексу IV. В норме он связан с наружной стороной внутренней мембраны митохондрий, то есть обращен в межмембранное пространство (см. рис. 5). Группа Ванга обнаружила, что при апоптозе цитохром с высвобождается из митохондрий. Оказавшись в клетке, он связывается с несколькими другими молекулами, образуя апоптосому,  которая, в свою очередь, активирует одного из последних палачей — каспазу 3. Выброс цитохрома с из митохондрий означает неизбежную смерть клетки; если ввести его в здоровую клетку, она погибнет. Иными словами, неотъемлемая часть дыхательной цепи, отвечающей за производство энергии, необходимой для жизни клетки, является также и неотъемлемой частью апоптоза, отвечающего за ее смерть. Дилемма «жизнь или смерть» зависит от локализации одной конкретной молекулы. Ничто в биологии не сравнится с этим двуликим Янусом: с одной стороны — жизнь, с другой — смерть, а между ними несколько миллионных долей миллиметра.

Цитохром с — не единственный белок, высвобождающийся из митохондрий. Высвобождаются и некоторые другие белки, в том числе и такие, которые вовлечены в апоптоз, и иногда даже более сильно, чем цитохром с. Некоторые из этих белков активируют каспазы, другие (например, апоптоз-индуцирующий фактор, AIF) атакуют другие молекулы (например, ДНК) без помощи каспаз. Как часто бывает в биохимии, подробности кажутся неимоверно сложными, но основополагающие принципы просты: деполяризация внутренней мембраны митохондрий и образование свободных радикалов приводят к выходу в цитозоль цитохрома с и других белков; они активируют определенные ферменты; эти ферменты уничтожают клетку.

 

Битва жизни и смерти

 

Когда выяснилось, что жизнь или смерть клетки зависит от локализации цитохрома с и других судьбоносных белков, медицинские исследования, конечно же, обратились к поиску механизма, который приводит к высвобождению этих молекул из митохондрий. Этот механизм тоже непростой, но помогает понять связь между внутренним и внешним путем апоптоза. За исключением ряда случаев (которые, скорее всего, непринципиальны), главную роль в обеих формах клеточной смерти играют митохондрии. Почти всегда именно они держат руку на выключателе машины смерти. Когда достаточное число митохондрий изливает в клетку свои смертоносные белки, клетка совершает самоубийство.

Согласно последним исследованиям Стена Оррениуса и его коллег из Каролинского института (Стокгольм, Швеция), высвобождение цитохрома с происходит в два этапа. На первом этапе белок мобилизуется из митохондриальной мембраны. Цитохром с непрочно связан с липидами мембраны (особенно с кардиолипином) и высвобождается из внутренней митохондриальной только при их окислении. Это объясняет, зачем при апоптозе нужны свободные радикалы: они окисляют липиды внутренней мембраны, что приводит к высвобождению цитохрома с. Но это еще не все. Далее цитохром с переходит в межмембранное пространство, однако не может покинуть митохондрии до тех пор, пока внешняя мембрана не станет более проницаемой. Дело в том, что цитохром с — это белок, а белковые молекулы слишком велики, чтобы просто проникнуть через мембрану. Чтобы он мог покинуть митохондрию, должна открыться какая-то мембранная пора.

Более десяти лет ученые никак не могли понять, что это за пора. Казалось, в разных ситуациях работают разные механизмы и по меньшей мере существуют два типа пор. Один механизм явно предполагает метаболический стресс самих митохондрий, приводящий к избыточному производству свободных радикалов. С повышением уровня стресса во внешней мембране открывается пора переходной проницаемости. Это приводит к набуханию и разрыву мембраны, а также высвобождению белков.

Еще одна пора, которая, скорее всего, более универсальна, связана с большим семейством белков bcl-2. Это название, по большому счету, устарело (оно связано с открытым в 1980-х гг. онкогеном и означает B-клеточная лимфома/лейкемия-2). Сейчас нам известен по крайней мере 21 ген, кодирующий белки семейства bcl-2. Их можно разделить на две большие группы, которые ведут друг с другом сложную и пока малопонятную войну. Одна группа белков защищает от апоптоза. Они находятся на внешней митохондриальной мембране и, видимо, предотвращают образование пор, не давая цитохрому с и другим белкам выходить в цитозоль. Другая группа действует противоположным образом. Они образуют поры, через которые, видимо, цитохром с и другие белки могут покинуть митохондрии. Таким образом, эта группа белков способствует апоптозу. В норме они есть во всей клетке и перемещаются в митохондрии, только получив определенный сигнал. Конечный итог, то есть то, совершает клетка апоптоз или нет, зависит от численного соотношения враждующих членов семейства в митохондриальной мембране, а также от числа митохондрий, принимающих участие в битве. Если сторонники апоптоза численно превосходят его противников, поры открываются, из митохондрий изливаются смертоносные белки и клетка совершает самоубийство.

Существование враждующего семейства белков bcl-2 помогает понять связь между внутренним и внешним путем апоптоза. На исход междоусобной войны влияет множество разных сигналов. Например, и «сигналы смерти» снаружи (внешний путь), и «сигналы повреждения» изнутри (внутренний путь) склоняют чашу весов в пользу апоптоза[61]. Таким образом, белки bcl-2 интегрируют разнообразные сигналы как снаружи, так и изнутри и оценивают их силу. Если смерть перевешивает, во внешней мембране митохондрий образуются поры, цитохром с и другие белки выходят в цитозоль и активируется каспазный каскад. Поэтому последние этапы апоптоза, как правило, одинаковы.

Центральная роль митохондрий в обоих путях апоптоза наводит на мысль, что так было всегда. Мы уже обсуждали, что бактерии и раковые клетки действуют независимо, в своих собственных интересах, и поэтому их можно считать «единицами отбора». Отбор может одновременно действовать на уровне клетки и на уровне особи. Митохондрии некогда были свободноживущими бактериями и привыкли действовать независимо. Став частью другого организма, они, надо полагать, сохранили способность к независимым действиям, по крайней мере на некоторое время, и могли взбунтоваться так, как это делают раковые клетки.

Если сегодня митохондрии убивают клетку, в которой находятся, то, может быть, они делали это и в самом начале симбиоза в своих собственных интересах? Может быть, апоптоз возник не для блага особи, а из-за эгоизма постояльца? Если так, то это скорее убийство, чем самоубийство. Зато понятно, как клетки «согласились» принять смерть — эта была диверсия изнутри. Так есть ли какие-то доказательства того, что митохондрии протащили в эукариотическую клетку машину смерти? Да, такие доказательства есть.

 

Войны паразитов?

 

Ген, кодирующий цитохром с, был принесен в эукариотическую клетку предками митохондрий, а впоследствии переместился в ядро (см. часть 3 книги). Мы знаем это потому, что практически идентичная генная последовательность есть у α-протеобактерий и она является частью дыхательной цепи, самым важным вкладом в партнерство. Менее ясно, насколько важен был цитохром с на ранних этапах эволюции апоптоза. Хотя он и играет определяющую роль в апоптозе у млекопитающих и, возможно, у растений, он не нужен для апоптоза у плодовых мушек или нематод. Ясно, что он не является универсальным игроком. Играл он главную роль в инициации апоптоза на ранних этапах эволюции и был потом отстранен от этой роли у нескольких видов, или приобрел ключевое значение относительно недавно, независимо у растений и млекопитающих? Это мы узнаем только тогда, когда будем больше знать об апоптозе у самых примитивных эукариот. Как мы видели, цитохром с — только один из многих белков, которые высвобождаются из митохондрий во время апоптоза. Эти белки имеют очень странные названия: Smac/DIABLO, Omi/HtrA2, endonuclease G, AIF  (у плодовой мушки названия таких белков гораздо лучше отражают их функции — Reaper, Grim, Sickle). Некоторые из них иногда играют даже более важную роль, чем цитохром с. Большинство этих белков было открыто в нынешнем тысячелетии, но благодаря многочисленным проектам секвенирования геномов мы уже знаем кое-что об их происхождении. Оно поразительно. За единственным исключением (AIF, апоптоз — индуцирующий фактор), все известные апоптотические белки, высвобождающиеся из митохондрий, имеют бактериальное происхождение. У архей их нет. (Вспомним, о чем мы говорили в части 1: клетка-хозяин, скорее всего, была археем, а митохондрии — бактериями.) Это означает, что у клетки-хозяина практически не было машины смерти. Митохондрии принесли в эукариотический союз не все апоптотические белки, некоторые попали в эукариотические клетки позже, в результате горизонтального переноса генов от других бактерий. Однако единственный вклад архей в машину смерти эукариотической клетки — это AIF, и надо заметить, что у современных архей он не имеет никакого отношения к смерти клеток.

Бактериальное происхождение имеют не только белки митохондрий, но и каспазы, если верить данным, полученным при секвенировании их генов. Впрочем, бактериальные каспазы довольно смирные: они режут белки на кусочки, но не вызывают смерть клеток. Более загадочно происхождение семейства белков bcl-2. Последовательности их генов имеют мало общего как с бактериями, так и с археями. Тем не менее трехмерная структура этих белков напоминает бактериальные белки, в частности, группу токсинов некоторых патогенных бактерий, таких как дифтерийная палочка. Как и вызывающие апоптоз белки семейства bcl-2, бактериальные токсины образуют поры в мембране клетки-хозяина, а иногда даже вызывают апоптоз.

Все это наводит на мысль о том, что большая часть машины смерти была привнесена в эукариотический симбиоз предками митохондрий. Тогда это похоже не на самоубийство, а на коварное убийство, акт вопиющей неблагодарности со стороны постояльца. Эта идея легла в основу убедительной гипотезы, предложенной Хосе Фраде и Теологосом Михелидисом из Института физиологии им. Макса Планка (Мартинсрид, Германия) еще в 1997 г. Данные, накопившиеся с тех пор, по большей части подтверждают ее.

Фраде и Михелидис провели параллель между поведением современной бактерии Neisseria gonorrhoeae (возбудителя гонореи, заболевания, передающегося половым путем) и тем, как могли бы вести себя протомитохондрии. N. gonorrhoeae заражает клетки уретры и шейки матки, а также лейкоциты. Оказавшись внутри, эти бактерии проявляют дьявольскую хитрость. Они продуцируют образующий поры белок PorB (он похож на митохондриальные белки bd-2) и «вставляют» его в клеточную мембрану хозяина, а также в мембрану вакуоли, в которую «завернуты» бактерии внутри клетки. Эти поры плотно закрыты, пока взаимодействуют с АТФ клетки (опять-таки сходным образом ведут себя некоторые белки bcl), но когда запасы АТФ хозяина истощаются, поры открываются. Открытие пор запускает машину апоптоза, и клетка погибает. Сами бактерии тем не менее выживают. Они спасаются бегством, прихватив с собой в качестве провианта аккуратно упакованные погибшие клетки. Таким образом, бактерии живут в клетке, пока та здорова, контролируя ее способность поддерживать запасы АТФ, но как только запасы начинают истощаться, бактерии убивают ее и отправляются на поиски новых клеток. Вот мерзавцы!

Фраде и Михелидис отмечают, что N. gonorrhoea — не единственная бактерия, способная на такое коварство. К сходной тактике прибегает страшный бактериальный хищник Bdellovibrio, с которым мы уже встречались в части 1. Проникнув внутрь другой бактерии, он тоже некоторое время контролирует ее метаболическое здоровье, а потом поедает изнутри. Кстати, Линн Маргулис называла Bdellovibrio одним из возможных предков митохондрий. Еще один претендент — бактерия Rickettsia prowazekii, о которой мы говорили в частях 1 и 3, — тоже внутриклеточный паразит. Такая «биохимическая археология» — свидетельство того, что сначала отношения между митохондриями и содержащими их клетками были паразитическими. Попав внутрь архея, протомитохондрии некоторое время следили за его здоровьем, потом вызывали его смерть, подъедали его останки и шли искать следующего хозяина.

Происхождение апоптоза в вооруженной борьбе будущих партнеров по симбиозу означает, что эукариотический симбиоз начинался с того, что паразит убивал хозяина и шел искать нового. Это, как вы уже догадались, буквально то, о чем говорила Линн Маргулис и другие биологи. В наследство от этих отношений эукариотической клетке досталась машина смерти, которая потом нашла другое применение и стала использоваться для программируемого самоубийства клеток у многоклеточных организмов. Но вовсе не о войнах паразитов говорили мы в части 1, когда обсуждали происхождение эукариотической клетки; нет, там речь шла о сотрудничестве двух миролюбивых прокариот, живших бок о бок в метаболическом браке. В тот момент мы рассмотрели и отбросили допущение о том, что отношения между двумя клетками были паразитическими. Теперь, посмотрев на вещи под другим углом, мы вернулись к этому допущению. В этой области науки ни в чем нельзя быть уверенным: приходится постоянно взвешивать все доводы, имеющие хоть какое-то отношение к делу. Только что обсуждавшийся довод, несомненно, весом. Означает ли это крушение и без того утлой лодчонки наших построений? Неужели мне — о, ужас! — придется переписывать первую часть?

 

 

Основы индивидуума

 

Многоклеточная особь состоит из клеток, сотрудничающих ради высшего блага. Тем не менее они сотрудничают не по любви, а под угрозой смертной казни для любой клетки, которая попробует дезертировать к предковому образу жизни. Время от времени эгоистичным клеткам удается избежать казни, тогда наступает рак. Раковые клетки бесконтрольно размножаются, забыв об общих интересах и подрывая единство тела. Отсрочив свою смерть, они в конце концов убивают бывшего хозяина и сами гибнут вместе с ним.

Рак существует потому, что редко встречается у молодых особей. Если бы тело гибло прежде, чем его клетки успевали бы организовать свое размножение (за счет половых клеток), то особь не оставила бы потомства и эгоистичные гены канули бы в Лету. На заре существования многоклеточных организмов, однако, составляющие его эгоистичные клетки имели шансы на независимое существование. В отличие от раковых клеток, они могли жить сами по себе, сохраняя потенциальную возможность основать новую колонию клеток. Эта независимость до сих пор встречается у губок и некоторых других животных, но такая либеральная политика в отношении клеток не дает им подняться к вершинам многоклеточной сложности. Истинная многоклеточность требует абсолютной жертвенности. Но если клетки могли жить независимо, как они согласились подписать собственный смертный приговор?

Сегодня смертная казнь клеток — апоптоз — отправляется митохондриями. Они объединяют сигналы из разных источников, и если их баланс указывает, что клетка повреждена, и потому может начать действовать в собственных интересах, митохондрии активируют клеточную машину смерти. Примерно 10 миллиардов клеток человеческого тела ежедневно умирают тихой и незаметной смертью путем апоптоза. На смену им приходят новые, неповрежденные клетки. Машина смерти состоит из нескольких белков, которые выходят из митохондрий в цитоплазму и активируют дремлющие «ферменты смерти» — каспазы. Эти ферменты расчленяют клетку изнутри и пакуют остатки, чтобы их пустили в дело другие клетки. Ничто не пропадает впустую.

Практически все «белки смерти», высвобождающиеся из митохондрий, а также сами каспазы, были некогда привнесены в эукариотическую клетку бактериальными предками митохондрий. У них по сей день есть ближайшие аналоги среди белков свободноживущих бактерий и особенно среди паразитических. У современных бактерий многие «белки смерти» вовсе не вызывают смерть самих бактерий или каких-либо других организмов, а используются в иных целях. С другой стороны, бактериальные белки семейства поринов — это боевое оружие, активно действующее на другие клетки. Возможно, так было всегда: бактериальные предки митохондрии были паразитами и использовали похожие на порины белки, чтобы расчленить клетку хозяина изнутри и съесть ее, после чего отправлялись искать новую жертву.

Так это было или нет, зависит от истинной природы бактериальных поринов. У современных паразитов они встроены в мембраны клетки-хозяина и безжалостно убивают его, как только он оказывается не в состоянии обеспечивать метаболические запросы паразита. Физически (но не генетически). бактериальные порины подозрительно похожи на митохондриальные порины — белки bcl-2, которые активируют клеточную машину смерти, образуя поры в митохондриальной мембране. Из этого следует и более широкий вывод: эукариотическая клетка родилась в горниле войны между внутриклеточным паразитом, который впоследствии был усмирен и стал митохондрией, и клеткой-хозяином, которая научилась справляться с инфекцией.

Звучит довольно просто, но есть одна загвоздка. В части 1 мы рассмотрели несколько теорий происхождения эукариотической клетки, в частности, «паразитическую модель», в рамках которой митохондрии произошли от похожей на рикеттсию бактерии, и водородную гипотезу, которая утверждает, что изначально союз был основан на взаимной метаболической выгоде: один партнер использовал продукт метаболизма другого, и наоборот. Там я утверждал, что современные данные поддерживают водородную гипотезу, а не паразитическую модель. Однако только что сказанное о паразитах не согласуется с водородной гипотезой, предполагающей мирный метаболический союз. Паразиту может быть выгодно убить хозяина, чтобы найти следующего, а вот метаболическому наркоману незачем убивать поставщика, особенно если мало надежды найти другого. Значит, либо паразитическая модель подрывает доверие к водородной гипотезе, либо она сама неверна, что бы там она ни объясняла. Не могут обе эти теории быть правильными одновременно. Так какая же из них ближе к истине?

Чтобы ответить на этот вопрос, нам сначала нужно отделить проверенные или, по крайней мере, пока не оспоренные факты от хитроумных домыслов. Это нетрудно. Понятно, что митохондрии в большой мере отвечают за машину смерти: они играют ключевую роль в апоптозе современных организмов и наверное внесли важный вклад в его эволюцию. А вот связь между белками bcl-2 и бактериальными поринами, например у Neisseria gonorrhoeae, относится к хитроумным домыслам. Загадочное структурное сходство действительно есть, но оно не доказывает эволюционную связь.

На основании современных данных можно предположить три возможных варианта взаимоотношений между белками bcl-2 и бактериальными поринами. Во-первых, сходство между ними может быть связано с конвергентной эволюцией: и митохондрии и N. gonorrhoeae могли независимо приобрести похожие белки для сходных целей. Никакие генетические данные не исключают эту возможность, а тем, кто сомневается в силе конвергентной эволюции на молекулярном уровне, я рекомендую книгу Саймона Конвей-Морриса «Разгадка жизни». В этом случае между белками bcl-2 и бактериальными поринами не должно быть генетического родства, но можно ожидать структурного сходства, связанного с общностью функций. Есть не так уж много способов проделать большую пору в липидной мембране, и они должны накладывать определенные функциональные ограничения. Если двум разным клеткам нужны большие поры, они, скорее всего, придут к сходным решениям.

Вторая возможность заключается в том, что митохондрии действительно унаследовали белки bcl-2 от своих бактериальных предков, как предложили Фраде и Мехелидис (см. предыдущую главу). Доказать это можно, только найдя общие черты в генетических последовательностях, а они не найдены. Более того, такие общие черты должны быть у представителей α-протеобактерий (предков митохондрий), или придется допустить возможность горизонтального переноса генов на более поздней стадии. Ясно, что если горизонтальный перенос генов происходил позже, он ничего не скажет нам об изначальных отношениях между митохондриями и клеткой-хозяином. Итак, более систематическое изучение генов α-протеобактерий может подкрепить эту гипотезу, но пока что структурное сходство — в лучшем случае повод задуматься.

Наконец, возможно, что N. gonorrhoea и другие паразитические бактерии получили свои порины от митохондрий, а не наоборот. Такой перенос генов от хозяина к паразиту — обычное дело. Если это было так, то следует ожидать сходства последовательностей у генов митохондрий и паразитов. Отсутствие таких сходных последовательностей может быть связано с тем, что их просто не искали (и тогда они всплывут, когда мы отсеквенируем больше генов), а может быть, они просто потерялись, стерев все свидетельства общности происхождения. Такое тоже возможно, так как непрекращающаяся эволюционная война между паразитом и хозяином приводит к исключительному непостоянству генов паразита. Более того, бактериальные порины сами по себе не вызывают весь апоптоз, они просто подключаются к уже существующей машине смерти. По сути дела, они несут с собой портативный тумблер, позволяющий «включить» машину смерти клетки хозяина. Поэтому поведение современных паразитов, вызывающих клеточную смерть, несравнимо с предполагаемым поведением протомитохондрий. Последним пришлось бы притащить в клетку всю машину смерти, наладить ее работу, но при этом не погибнуть самим. (Сегодня, конечно, митохондрии погибают вместе с клеткой.)

Имеющиеся данные не позволяют сделать выбор между этими тремя возможностями. Тем не менее батальное полотно кисти Фраде и Михелидиса, по крайней мере, выглядит непротиворечиво. Или все-таки нет? В этой истории есть целый ряд других заковыристых проблем. Во-первых, и это главное, митохондрии больше не являются независимо размножающимися клетками, и скорее всего они потеряли независимость сразу после начала переноса их генов в ядро клетки-хозяина. Как только несколько важных генов оказались заложниками в ядре, убийство хозяина не сулило митохондриям ничего хорошего. Их будущее было неразрывно связано с будущим хозяина. Можно было попробовать манипулировать хозяином, но убивать его явно не стоило. Напротив, никакие паразиты, даже мельчайшие Rickettsia,  не потеряли свою независимость. Они полностью контролируют свой жизненный цикл и свои ресурсы. Им, в отличие от митохондрий, убийство хозяина может сойти с рук.

Когда именно митохондрии потеряли власть над собственным будущим, неизвестно, но скорее всего это произошло на самых ранних этапах эволюции эукариотической клетки. Посмотрим, например, на эволюцию переносчика АТФ — мембранной помпы, экспортирующей АТФ из митохондрий. Этот переносчик впервые позволил эукариотическим клеткам получать энергию в форме АТФ из митохондрий (до этого момента само слово «митохондрии» было к ним неприменимо). Это был символический шаг, так как симбионты потеряли контроль над своими энергетическими ресурсами, а с ним и независимость. Для митохондрий это означало переход от статуса гостя к статусу пленника. Мы можем довольно точно датировать этот переход, сравнивая последовательности гена, кодирующего переносчика АТФ, у разных групп эукариот. Тот факт, что этот переносчик встречается во всех группах эукариот, включая растения, животных, грибы, водоросли и простейших, наводит на мысль, что он возник до расхождения этих групп, то есть очень давно и, само собой, до появления многоклеточных животных (судя по ископаемой летописи, возможно, за несколько сотен миллионов лет).

Итак, налицо временной провал. Кажется весьма вероятным, что митохондрии потеряли автономию задолго до возникновения настоящих многоклеточных организмов. В тот период убийство хозяина не сулило митохондриям никаких преимуществ, потому что они уже не могли существовать независимо. Клеткам-хозяевам, в свою очередь, была абсолютно невыгодна смерть, потому что тогда они еще не являлись частью многоклеточного организма. Таким образом, нынешние преимущества апоптоза — жесткой полицейской системы многоклеточного организма — не имели силы.

Это парадокс. Судя по всему, специализированная машина смерти была никому не нужна. Казалось бы, естественный отбор должен был избавиться от нее, но этого не произошло. Мы также знаем, что происхождение существенной части ее механизма связано с митохондриями. В довершение всего, водородная гипотеза, которую я так превозносил, утверждает, что эукариотическая клетка родилась от метаболического союза двух мирно сосуществующих клеток, которым не было выгодно убивать друг друга. Кажется, я завел вас в тупик. Одна из клеток протащила в мирный союз налаженную машину смерти, вредную для обоих членов союза; несмотря ни на что, эта машина сохранялась на протяжении нескольких сотен миллионов лет, пока наконец ей не нашлось применение. Можно ли найти логичное обоснование этому безумному сценарию? Да, можно, но только если мы готовы на уступку. Машина смерти не всегда вызывала смерть. В один прекрасный день она вызвала появление пола.

 

Секс и смерть

 

Давайте рассмотрим первых эукариот с точки зрения водородной гипотезы, предполагающей мирное сосуществование. Во введении к части 5 книги мы обсуждали, что естественный отбор может действовать на разных уровнях — на уровне особи, ее клеток, митохондрий и, конечно, генов. Мы видели, что когда речь идет о клетках, которые, как бактерии, размножаются бесполым путем, не всегда правильно считать, что естественный отбор действует на уровне генов. В таких случаях отбор в основном работает на уровне отдельных клеток, которые и есть истинные самовоспроизводящиеся единицы. Эти соображения сейчас нам очень пригодятся, потому что мы должны по отдельности рассмотреть интересы митохондрий и интересы содержащих их клеток на заре существования эукариотического симбиоза. Тогда и тех и других можно было считать отдельными клетками (в следующих главах мы увидим, что такой подход может оказаться полезным, даже когда речь идет о современности).

Так какими же были частные интересы протомитохондрий и клеток-хозяев? И как, учитывая сочетание автономии и неустойчивой взаимозависимости, они вообще могли действовать в своих интересах? Убедительный ответ на этот вопрос предложили в 1999 г. двое ученых: Нейл Блэкстоун, один из самых плодотворных мыслителей в области эволюционной биохимии (Университет Северного Иллинойса, США), и Дуглас Грин, один из первых исследователей высвобождения цитохрома с при апоптозе (Калифорнийский университет в Сан-Диего, США).

Митохондрии, как и все клетки, должны пролиферировать, то есть размножаться с увеличением числа клеток. После того как они связали свою судьбу с судьбой хозяина, убивать его и находить следующего не было смысла, так как вне клетки они бы не выжили. Кроме того, есть предел размножения митохондрий в одной клетке: митохондриальный «рак» погубил бы и клетку и митохондрии. Таким образом, успешное размножение митохондрий возможно только параллельно с размножением клетки-хозяина. Когда она делится, популяция митохондрий должна удвоиться, чтобы обеспечить митохондриями дочернюю клетку. Конечно, клетка-хозяин тоже спит и видит, как бы ей поделиться, поэтому ее интересы и интересы митохондрий совпадают. В противном случае этот союз вряд ли продолжался бы два миллиарда лет. Он бы распался в самом начале, и мы бы сейчас не ломали голову над этой проблемой, потому что нас не было бы.

Но интересы митохондрий и клетки-хозяина не всегда совпадают. Что произойдет, если клетка-хозяин по какой-то причине откажется делиться? Ясно, что ее митохондрии тоже не смогут размножаться (ну, то есть они могли бы, но только до определенного предела, а потом разрушили бы клетку и себя самих вместе с ней). Исход зависит от того, почему клетка-хозяин отказалась делиться. Скорее всего, причиной было отсутствие пищи. В части 3 мы говорили о том, что, несмотря на огромный потенциал в плане размножения, бактерии проводят большую часть жизни в заторможенном состоянии. То же самое, скорее всего, относилось и к ранним эукариотам. Если так, им оставалось только подтянуть кушаки и ждать обеда, после которого можно снова начинать размножаться. Интересы митохондрий и клетки-хозяина снова совпадали: если митохондрии будут вынуждать хозяина делиться в условиях нехватки ресурсов, они погибнут вместе с ним. Куда лучше направить оставшиеся ресурсы на повышение устойчивости к вероятному в период лишений физическому стрессу — жаре, холоду, ультрафиолету. В таких случаях многие клетки образуют устойчивую спору, переживая неблагоприятные условия в состоянии покоя и возвращаясь к жизни, когда все налаживается.

Кроме того, клетке могло помешать делиться повреждение, в том числе повреждение ядерной ДНК. Тут интересы хозяина и митохондрии начинают расходиться. Предположим, что пищи много, но клетка-хозяин тем не менее не делится. Я прямо вижу, как митохондрии кричат, прижимаясь лицом к решетке: «Выпустите нас! Мы не сделали ничего плохого!» Тем временем соседние клетки, посмеиваясь, продолжают делиться, и их митохондрии радостно делятся вместе с ними. Что же делать митохондриям, которые оказались в ловушке? Убивать хозяина невыгодно, тогда они погибнут сами. Хорошо бы заставить клетку-хозяина слиться с другой клеткой и рекомбинировать ДНК с ДНК партнера. Рекомбинация ДНК обычна у бактерий и является основой пола у эукариот. Слившаяся клетка получает шанс на новую жизнь, а митохондрии — место, где можно размножаться.

Учитывая, что половой процесс — крайне затратная вещь, ожесточенные споры о том, почему он возник, бушуют до сих пор. Скорее всего, вклад внесли несколько факторов. Уильям Хамильтон предполагал, что половой процесс «маскирует» повреждения ДНК (поврежденный ген, вероятно, окажется в паре с неповрежденной копией того же гена), а генерируемая рекомбинацией изменчивость может давать клетке преимущества в борьбе с паразитами. Последние данные говорят о том, что ни одной из этих причин по отдельности недостаточно, чтобы объяснить возникновение полового процесса. Однако они не противоречат друг другу, а преимущества полового процесса, по всей видимости, разнообразны. С другой стороны, его происхождение окутано тайной. У бактерий есть рекомбинация, но нет слияния клеток. Напротив, у большинства эукариот при половом размножении происходит слияние двух клеток, затем слияние их ядер и, наконец, рекомбинация их генов (самое «обязывающее» из всех этих действий). Почему эукариотические клетки вообще стали сливаться? Понятно, что утрата бактериями неудобной клеточной стенки сделала сам физический акт слияния в принципе возможным, но потребности сливаться это не объясняет. Может быть, это митохондрии заставили эукариотические клетки сливаться друг с другом? Может быть, половое слияние — это тоже митохондриальная диверсии? Том Кавалье-Смит, с которым мы встречались в ча

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...