Термины «конфигурация» и «конформация» имеют разный смысл
Прежде всего мы должны точно определить, что означают два термина, часто используемые при обсуждении пространственной структуры молекул: конфигурация и конформация. Эти слова - не синонимы. Под конфигурацией подразумевают пространственную организацию органической молекулы, определяемую наличием в ней 1) двойных связей, вокруг которых свободное вращение невозможно, и 2) хиральных центров с расположенными вокруг них в определенной последовательности замещающими группами. На рис. 7-1 показана конфигурация фумаровой кислоты — одного из промежуточных соединений углеводного обмена - и конфигурация ее изомера - малеиновой кислоты, встречающейся в некоторых растениях. Эти соединения представляют собой геометрические, или цистрансизомеры; они различаются расположением замещающих групп относительно двойной связи. Фумаровая кислота - это трансизомер, а малеиновая кислота - цисизомер; и в том и в другом случае мы имеем дело со строго определенным соединением, которое можно получить в чистом виде. Рис. 1. Конфигурация стереоизомеров. Такие изомеры нельзя превратить один в другой без разрыва ковалентных связей. На рис. 1 изображены также L- и D-изомеры аланина (см. рис. 3-8 и 5-4), в которых замещающие группы имеют две различные конфигурации относительно хирального центра. Отличительным признаком конфигурационных изомеров является то, что их нельзя превратить один в другой без разрыва одной или большего числа ковалентных связей. Термин конформация используют для описания пространственного расположения в органической молекуле замещающих групп, способных свободно изменять свое положение в пространстве без разрыва каких бы то ни было связей благодаря свободному вращению вокруг одинарных углерод-углеродных связей. Например, для простого углеводорода этана характерна полная свобода вращения вокруг одинарной С—С-связи. Поэтому молекула этана может принимать множество различных конформаций в зависимости от угла поворота одного атома углерода относительно другого; однако все эти конформации легко переходят одна в другую в результате вращения замещающих групп вокруг С—С-связи. Заторможенная конформация этана (рис. 7-2) более устойчива по сравнению со всеми остальными и поэтому встречается чаще других, тогда как заслоненная конформация наименее устойчива. Ни одну из этих двух конформационных форм этана невозможно выделить в чистом виде, так как между ними существует равновесие и они свободно переходят одна в другую. Однако, как можно предположить, исходя из моделей, представленных на рис. 7-2, если в молекуле этана один или большее число атомов водорода, связанных с двумя атомами углерода, заменить на более крупные или электрически заряженные функциональные группы, то свобода вращения вокруг одинарной С—С-связи окажется сильно ограниченной, что существенно уменьшит число возможных конформаций молекулы этана.
Хиральный центр - это атом в молекуле, замещенный таким образом, что он становится несовместимым со своим зеркальным отражением. Атом углерода является центром хиральности только в том случае, когда имеет четыре различных заместителя. Асимметрический атом — атом многовалентного элемента (напр., углерода, азота), к которому присоединены неодинаковые атомные группы или атомы других элементов. В этих соединениях атомы углерода, помеченные звёздочкой, являются асимметрическими. Асимметрический атом отмечают звёздочкой. Наличие асимметрического атома в молекуле обусловливает её оптическую активность. Асимметрическими могут быть атомы элементов, напр. Si, N, Р, As. Роль одного из заместителей может играть своб. электронная пара, напр. у атома Р в фосфинах (II). Наличие асимметрических атомов в молекуле - наиболее частая причина её хиральности, а следовательно, и оптической активности. Молекулы, в которых содержатся асимметрические атомы в количестве n, могут существовать в виде 2n пространств, изомеров, молекулы с одним асимметричным атомом - в виде пары оптических изомеров - энантиомеров.
Хиральность (др. -греч. χ ε ι ρ — рука) — свойство молекулы не совмещаться в пространстве со своим зеркальным отражением[1]. Термин основан на древнегреческом названии наиболее узнаваемого хирального предмета — руки. Так, левая и правая руки являются зеркальными отражениями, но не могут быть совмещены друг с другом в пространстве. Подобным образом, свойством хиральности обладают молекулы, в которых отсутствуют зеркально-поворотные оси симметрии Sn, что эквивалентно наличию в молекуле элементов хиральности (центра, оси, плоскости хиральности и др. ). Такие зеркально-симметричные формы химических соединений называются энантиомерами.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|