Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Параллельное и последовательное соединение конденсаторов. Ёмкость плоского, цилиндрического и сферического конденсаторов.




1. Параллельное соединение конденсаторов (рис. 144). У параллельно соединенных конденсаторов разность потенциалов на обкладках конденсаторов одинакова и равна jA – jB. Если емкости отдельных конденсаторов С 1, С 2 ,..., Сn, то, согласно (94.1), их заряды равны

а заряд батареи конденсаторов

Полная емкость батареи

т. е. при параллельном соединении конденсаторов она равна сумме емкостей отдель­ных конденсаторов.

2. Последовательное соединение конденсаторов (рис. 145). У последовательно соеди­ненных конденсаторов заряды всех обкладок равны по модулю, а разность потенци­алов на зажимах батареи

где для любого из рассматриваемых конденсаторов D ji = Q / Сi. С другой стороны,

откуда

т. е. при последовательном соединении конденсаторов суммируются величины, об­ратные емкостям. Таким образом, при.последовательном соединении конденсаторов результирующая емкость С всегда меньше наименьшей емкости, используемой в ба­тарее.

Под емкостью конденсатора понимается физическая величина, равная отноше­нию заряда Q, накопленного в конденсаторе, к разности потенциалов (j1 j2) между его обкладками:

(94.1)

Рассчитаем емкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды +Q и –Q.

. Его можно рассчитать используя формулы (86.1) и (94.1). При наличии диэлектрика между обкладками разность потенциалов между ними, согласно (86.1),

(94.2)

где e — диэлектрическая проницаемость. Тогда из формулы (94.1), заменяя Q=sS, с учетом (94.2) получим выражение для емкости плоского конденсатора:

получим выражение для емкости цилиндрического конденсатора:

(94.5)

Для определения емкости сферического конденсатора, состоящего из двух концентрических обкладок, разделенных сферическим слоем диэлектрика,

Для определения емкости цилиндрического конденсатора, состоящего из двух полых коаксиаль­ных цилиндров с радиусами r 1 и r 2 (r 2 > r 1), вставленных один в другой

При наличии диэлектрика между обкладками разность потенциалов

(94.4)

Подставив (94.4) в (94.1),

При наличии диэлектрика между обкладками разность потенциалов

(94.6)

Подставив (94.6) в (94.1), получим

(94.3)

 

Из формул (94.3), (94.5) и (94.7) вытекает, что емкость конденсаторов любой формы прямо пропорциональна диэлектрической проницаемости диэлектрика, заполняющего пространство между обкладками. Поэтому применение в качестве прослойки сегнетоэлектриков значительно увеличивает емкость конденсаторов

15. Электростатическое поле в диэлектрике. Полярные и неполярные диэлектрики.

Элект­рические поля, которые создаются неподвижными электрическими зарядами и называ­ются электростатическими. Диэлектрики (например, стекло, пластмассы) — тела, в которых практически отсутствуют свободные заряды.

Как только мы помещаем диэлектрик в электростатическое поле, на каждый диполь будет действовать пара сил. Под действием этих сил диполи начнут разворачиваться отрицательными полюсами влево, а положительными вправо. При этом с левой стороны окажется больше положительных полюсов диполей, а справа - отрицательных.

Внутри диэлектрика возникнет своё, внутреннее поле, направленное против внешнего. Тепловое движение молекул не даёт им выстроиться ровно вдоль силовых линий, поэтому внутреннее поле будет меньше внешнего. Следовательно, общее поле внутри диэлектрика будет меньше внешнего.

Вывод: диэлектрик ослабляет внешнее электрическое поле.

2 вида диэлектриков ( различаются строением молекул):

1) полярные - молекулы, у которых центры положительного и отрицательного зарядов не совпадают (спирты, вода и др.); Первую группу диэлектриков (N2, Н2, О2, СО2, СН4,...) составляют вещества, молекулы которых имеют симметричное строение, т. е. центры «тяжести» положитель­ных и отрицательных зарядов в отсутствие внешнего электрического поля совпадают и, следовательно, дипольный момент молекулы р равен нулю. Молекулы таких диэлект­риков называются неполярными. Под действием внешнего электрического поля заряды неполярных молекул смещаются в противоположные стороны (положительные по полю, отрицательные против поля) и молекула приобретает дипольный момент.

2) неполярные - атомы и молекулы, у которых центры распределения зарядов совпадают (инертные газы, кислород, водород, полиэтилен и др.). Вторую группу диэлектриков (H2O, NН3, SO2, CO,...) составляют вещества, молеку­лы которых имеют асимметричное строение, т. е. центры «тяжести» положительных и отрицательных зарядов не совпадают. Таким образом, эти молекулы в отсутствие внешнего электрического поля обладают дипольным моментом. Молекулы таких диэлектриков называются полярными. При отсутствии внешнего поля, однако, дипольные моменты полярных молекул вследствие теплового движения ориентированы в про­странстве хаотично и их результирующий момент равен нулю. Если такой диэлектрик поместить во внешнее поле, то силы этого поля будут стремиться повернуть диполи вдоль поля и возникает отличный от нуля результирующий момент.

Третью группу диэлектриков (NaCl, KCl, КВr,...) составляют вещества, молекулы которых имеют ионное строение. Ионные кристаллы представляют собой простра­нственные решетки с правильным чередованием ионов разных знаков. В этих кри­сталлах нельзя выделить отдельные молекулы, а рассматривать их можно как систему двух вдвинутых одна в другую ионных подрешеток. При наложении на ионный кристалл электрического поля происходит некоторая деформация кристаллической решетки или относительное смещение подрешеток, приводящее к возни­кновению дипольных моментов.

Таким образом, внесение всех трех групп диэлектриков во внешнее электрическое поле приводит к возникновению отличного от нуля результирующего электрического момента диэлектрика, или, иными словами, к поляризации диэлектрика.

16)Диэлектрическая восприимчивость. Свободные и связные заряды.

Диэлектри́ческая восприи́мчивость вещества — физическая величина, мера способности вещества поляризоваться под действием электрического поля. Диэлектрическая восприимчивость χe — коэффициент пропорциональности между поляризованностью P среды (дипольный момент единицы объёма) и напряженностью E внешнего электрического поля:

В системе СИ:

где — электрическая постоянная.

В случае вакуума

У диэлектриков, как правило, диэлектрическая восприимчивость положительна.

В системе СИ диэлектрическая восприимчивость является безразмерной величиной.

Зависимость от времени

В общем случае, вещество не может поляризоваться мгновенно в ответ на приложенное электрическое поле, поэтому более общая формула содержит время:

Это значит, что поляризованность вещества является свёрткой электрического поля в прошлом и восприимчивости, зависящей от времени как χe(Δt). Верхний предел этого интеграла может быть расширен до бесконечности, если определить χe(Δt) = 0 для Δt < 0. Мгновенный ответ соответствует дельта-функции Дирака χe(Δt) = χeδ(Δt).

В линейной системе удобно использовать непрерывное преобразование Фурье и писать это соотношение как функцию частоты. Благодаря теореме о свёртке этот интеграл превращается в обычное произведение:

Эта зависимость диэлектрической восприимчивости от частоты приводит к дисперсии света в веществе.

Тот факт, что поляризация вследствие принципа причинности может зависеть только от электрического поля в прошлом (то есть χe(Δt) = 0 для Δt < 0), налагает на восприимчивость χe(0) ограничения, называемые соотношениями Крамерса — Кронига.

Свободные заряды - электрические заряды, способные перемещаться внутри вещества под действием электрического поля. Свободные заряды не принадлежат конкретным атомам или молекулам.

Связные заряды - электрические заряды, входящие в состав атомов и молекул вещества и проявляющиеся при их деформации.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...