Колебательный контур. Свободные и затухающие колебания.
Для возбуждения и поддержания электромагнитных колебаний используется колебательный контур — цепь, состоящая из включенных последовательно катушки индуктивностью L, конденсатора емкостью С и резистора сопротивлением R. Согласно законуОма, для контура, содержащего катушку индуктивностью L, конденсатор емкостью С и резистор сопротивлением R, где IR— напряжение на резисторе, Uc=Q/C— напряжение на конденсаторе, – э.д.с. самоиндукции, возникающая в катушке при протекании в ней переменного тока ( – единственная э.д.с. в контуре). Следовательно, Разделив на L и подставив получим дифференциальное уравнение колебаний заряда Q в контуре: В данном колебательном контуре внешние э.д.с. отсутствуют, поэтому рассматриваемые колебания представляют собой свободные колебания Дифференциальное уравнение свободных затухающих колебаний линейной системы задается в виде где s – колеблющаяся величина, описывающая тот или иной физический процесс, d=const — коэффициент затухания, w 0 — циклическая частота свободных незатухающих колебаний той же колебательной системы, т. е. при d = 0 (при отсутствии потерь энергии) называется собственной частотой колебательной системы. Чтобы в реальной колебательной системе получить незатухающие колебания, надо компенсировать потери энергии. Такая компенсация возможна с помощью какого-либо периодически действующего фактора X (t), изменяющего по гармоническому закону: Если рассматривать механические колебания, то роль X (t) играет внешняя вынуждающая сила (147.1) С учетом (147.1) закон движения для пружинного маятника (146.9) запишется в виде Используя (142.2) и (146.10), придем к уравнению (147.2) Если рассматривать электрический колебательный контур, то роль X (t) играет подводимая к контуру внешняя периодически изменяющаяся по гармоническому закону э.д.с. или переменное напряжение
(147.3) Тогда уравнение (143.2) с учетом (147.3) можно записать в виде Используя (143.4) и (146.11), придем к уравнению (147.4) Колебания, возникающие под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями. Уравнения (147.2) и (147.4) можно свести к линейному неоднородному дифференциальному уравнению (147.5) применяя впоследствии его решение для вынужденных колебаний конкретной физической природы (x 0 в случае механических колебаний равно F 0 /m, в случае электромагнитных — U m/ L). Решение уравнения (147.5) равно сумме общего решения (146.5) однородного уравнения (146.1) и частного решения неоднородного уравнения. Частное решение найдем в комплексной форме (см. § 140). Заменим правую часть уравнения (147.5) на комплексную величину х 0 : (147.6) Частное решение этого уравнения будем искать в виде Подставляя выражение для s и его производных в уравнение (147.6), получаем (147.7) Так как это равенство должно быть справедливым для всех моментов времени, то время t из него должно исключаться. Отсюда следует, что h=w. Учитывая это, из уравнения (147.7) найдем величину s 0 и умножим ее числитель и знаменатель на Это комплексное число удобно представить в экспоненциальной форме: где (147.8) (147.9) Следовательно, решение уравнения (147.6) в комплексной форме примет вид Его вещественная часть, являющаяся решением уравнения (147.5), равна (147.10) где А и j задаются соответственно формулами (147.8) и (147.9). Таким образом, частное решение неоднородного уравнения (147.5) имеет вид
(147.11) Решение уравнения (147.5) равно сумме общего решения однородного уравнения
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|