Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Теоремы о непрерывных функциях. Непрерывность на отрезке. Равномерная непрерывность.




Теорема: f(x) и g(x) непрерывны в т.х0, то:

- непрерывны в точке х0.

Доказательство:: =f(x0).

: =g(x0).

.

Следствие 1: любой многочлен является непрерывной функцией любой точки действительной оси.

Следствие 2: любая рациональная функция: такая, что (это значит, что любая рациональная функция может иметь не более чем конечное число т.р.2).

Теорема:(о существовании обратной функции):

если функция y=f(x) непрерывна и строго монотонна на [a,b] оси Ох, то обратная функция также непрерывна и монотонна на соответствующем отрезке [c,d] оси Оу.

Свойства функций, непрерывных на отрезке:

Теорема (Вейерштрасса): если функция непрерывна на отрезке, то она достигает на этом отрезке своего наибольшего и наименьшего значений.

Следствие: если функция непрерывна на отрезке, то она ограничена на этом отрезке.

Непрерывность функции в интервале и на отрезке:

Функция y=f(x) называется непрерывной в интервале (a,b), если она непрерывна в каждой точке этого интервала.

Функция y=f(x) называется непрерывной на отрезке [a,b], если она непрерывна в интервале (a,b) и в точке х=а непрерывна справа (т.е. ), а в точке x=b непрерывна слева ().

Равномерная непрерывность:

Функция f: X → R называется равномерно-непрерывной на множестве X, если

.

 

 

Производная функции, ее геометрический и физический смысл.

Определение. Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если он существует.

 


у

f(x)

 

 

f(x0 +Dx) P

Df

f(x0) M

 

a b x 0 x0 Dx x0 + Dx

 

 

 

Пусть f(x) определена на некотором промежутке (a, b). Тогда тангенс угла наклона секущей МР к графику функции.

 

,

 

где a - угол наклона касательной к графику функции f(x) в точке (x0, f(x0)).

 

Угол между кривыми может быть определен как угол между касательными, проведенными к этим кривым в какой- либо точке.

 

Уравнение касательной к кривой:

 

Уравнение нормали к кривой: .

 

Фактически производная функции показывает как бы скорость изменения функции, как изменяется функция при изменении переменной.

Физический смысл производной функции f(t), где t- время, а f(t)- закон движения (изменения координат) – мгновенная скорость движения.

Соответственно, вторая производная функции- скорость изменения скорости, т.е. ускорение.


Дифференциал функции.

Пусть функция y = f(x) имеет производную в точке х:

Тогда можно записать: , где a®0, при Dх®0.

Следовательно: .

Величина aDx- бесконечно малая более высокого порядка, чем f¢(x)Dx, т.е. f¢(x)Dx- главная часть приращения Dу.

 

Определение. Дифференциалом функции f(x) в точке х называется главня линейная часть приращения функции.

Обозначается dy или df(x).

Из определения следует, что dy = f¢(x)Dx или dy = f¢(x)dx.

Можно также записать:

Геометрический смысл дифференциал

f(x)

K dy Dy

M L

 

a

x x + Dx

 

 

Из треугольника DMKL: KL = dy = tga×Dx = y¢×Dx

Таким образом, дифференциал функции f(x) в точке х равен приращению ординаты касательной к графику этой функции в рассматриваемой точке.

Свойства дифференциала.

Если u = f(x) и v = g(x)- функции, дифференцируемые в точке х, то непосредственно из определения дифференциала следуют следующие свойства:

 

1) d(u ± v) = (u ± v)¢dx = u¢dx ± v¢dx = du ± dv

2) d(uv) = (uv)¢dx = (u¢v + v¢u)dx = vdu + udv

3) d(Cu) = Cdu

Приближенные вычисления с помощью полного дифференциала.

Пусть функция f(x, y) дифференцируема в точке (х, у). Найдем полное приращение этой функции:

Если подставить в эту формулу выражение

то получим приближенную формулу:


Производная и дифференциал сложной функции.

 

Производная сложной функции.

Теорема. Пусть y = f(x); u = g(x), причем область значений функции u входит в область определения функции f.

Тогда

 

Доказательство.

(с учетом того, что если Dx®0, то Du®0, т.к. u = g(x) – непрерывная функция)

Тогда . Теорема доказана.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...