Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Математика тахионного убийства




Математика тахионного убийства

 

Назовем событием 1 выстрел из тахионного ружья, а событием 2 – смерть жертвы. Δ t = t 2t 1 = +10 наносекунд, и Δ x = x 2x 1 = 12 метров. Это означает, что тахион движется со скоростью 12/10 = 1, 2 метра в наносекунду, то есть примерно 4c. Знак плюс означает, что жертва умирает после того, как я стреляю, поскольку значение времени смерти больше, чем значение времени выстрела.

А теперь рассмотрим эти два события в системе отсчета, движущейся со скоростью v = ½ c. Тогда β = 0, 5; γ = 1/√ (1 − β ² ) = 1, 55. Используем уравнение скачка времени:

 

Δ T = γ (Δ t − Δ xv /c ² ) = γ Δ t [1 − (Δ xt )(v /c ² )].

 

Подставляем γ = 1, 55; Δ t = 10 наносекунд; v /c = 0, 5 и Δ xt = 4с и сокращаем c, получаем:

 

Δ T = (1, 55)(10 наносекунд)[1 − (0, 5)(4)] = − 15, 5 наносекунды.

 

То, что интервал времени получился отрицательным, означает, что порядок событий изменился на обратный. Жертва застрелена в момент времени T 2, но поскольку T 2T 1 меньше нуля, число T 1 больше. Следовательно, T 1, момент выстрела, происходит в большее – то есть более позднее – время.

Обратите внимание также, что если Δ xt = V E меньше, чем скорость света c, – то есть если пуля движется с досветовой скоростью, – такая смена порядка событий невозможна. Чтобы события поменялись местами, V E/c должно быть больше, чем c /v, а c /v всегда больше 1. Так что для любых двух событий, которые можно связать с помощью сигнала, движущегося со скоростью меньше скорости света, порядок, в котором они происходят, будет одинаковым для всех допустимых систем отсчета – то есть для всех систем, для которых v меньше c. Мы называем такие события времениподобными. Пространственноподобными называют события, разделенные таким большим расстоянием, что для их соединения скорости света недостаточно.

 

Математика гравитационного эффекта времени

 

Эйнштейн постулировал, что течение времени в гравитационном поле можно рассчитать исходя из предположения, что оно эквивалентно течению времени в ускоряющейся системе отсчета. Этим мы сейчас и займемся.

Предположим, у нас имеется ракета высотой h, которая находится в такой области пространства, где отсутствует гравитация. Ракета движется носом вперед с ускорением, соответствующим ускорению свободного падения в поле тяготения Земли, g = 32 фута в секунду в квадрате (9, 8 м/с2). Будем считать, что верх и низ ракеты ускоряются одновременно в системе отсчета, связанной с первоначальной позицией ракеты. Через время Δ t система отсчета, связанная с ракетой, движется со скоростью v = g Δ t относительно первой СО (при условии, что начальная скорость ракеты равна нулю).

Воспользуемся уравнением из примера про тахионное убийство, чтобы вычислить соответствующий интервал времени в верхе ракеты:

 

Δ T = γ (Δ t − Δ xv /c ² ).

 

Подставив Δ x = h и v = g Δ t и считая приближенно (для нерелятивистских скоростей), что γ = 1 (β ≈ 0), получим:

 

Δ T = Δ thg Δ t /c ².

 

Разделим на Δ t:

 

Δ Tt = 1 − gh /c ².

 

Отсюда видно, что на высоте h интервал времени для верха, Δ T, меньше, чем интервал времени в нижней части, Δ t. Часы в верхней части ракеты идут быстрее. В более общем случае это уравнение часто записывается как:

 

Δ Tt = 1 − ø /c ²,

 

где ø – разность гравитационных потенциалов. К примеру, потенциал на поверхности Земли, в сравнении с бесконечностью, будет: ø = GM /R, где M – масса Земли, G – гравитационная постоянная, а R – радиус Земли.

Во многих учебниках эта формула выводится совершенно иначе, из красного смещения света, направленного с верхушки некоего ящика к его основанию. Я предпочитаю тот подход, который только что изложил, потому что в нем явно используется принцип эквивалентности, положенный в основу общей теории относительности Эйнштейна; в этом подходе видно, что эффект возникает благодаря слагаемому xv /c ² в уравнениях Лоренца – тому самому слагаемому, которое приводит и к нарушению одновременности.

 

 

Приложение 2

Время и энергия [279]

 

Самое завораживающее, точное и (для физика) практичное определение энергии оказывается в то же время и самым абстрактным – слишком абстрактным даже для того, чтобы говорить о нем в первые несколько лет обучения университетской физике. Оно основано на наблюдении, что истинные уравнения, такие как E = mc ², завтра будут не менее истинными, чем сегодня. Это гипотеза, которую большинство людей принимает на веру как нечто само собой разумеющееся, хотя кое‑ кто не прекращает ее тестировать. Если вдруг обнаружится какое‑ то отклонение, это станет одним из самых глубоких и важных открытий в истории науки.

На физическом жаргоне то, что уравнения не меняются, называется инвариантностью во времени (временн ой инвариантностью, то есть неизменностью). Это не означает, что в физике ничего не меняется; если объект движется, его положение в пространстве изменяется со временем, его скорость изменяется со временем, вообще, множество вещей в физическом мире меняется со временем – но только не уравнения, которые описывают это движение. В следующем году мы вновь будем рассказывать студентам, что E = mc ², потому что это по‑ прежнему будет правдой.

Свойство временно й инвариантности кажется тривиальным, но его математическое выражение может привести к поразительному выводу – доказательству того, что энергия сохраняется. Это доказательство обнаружила Эмми Нётер. Как и Эйнштейн, она бежала из нацистской Германии и поселилась в США.

Следуя описанной Нётер процедуре и начав с уравнений физики, мы всегда можем найти такую комбинацию параметров (координата, скорость и т. п. ), которая не будет изменяться со временем. Когда мы применяем этот метод в простых случаях (в классической физике с силой, массой и ускорением), величиной, которая не меняется со временем, оказывается сумма кинетической и потенциальной энергии – иными словами, классическая (полная) энергия системы.

Вот это открытие. Мы и так знаем, что энергия сохраняется.

Но теперь получаем интереснейшую философскую связь. Вот и причина, по которой сохраняется энергия: все дело во временно й инвариантности!

Есть и еще более значительный результат: такая процедура работает даже тогда, когда мы применяем этот метод к гораздо более сложным уравнениям современной физики. Представьте следующий вопрос: что, собственно, сохраняется в теории относительности? Энергия или энергия плюс энергия, заключенная в массе? Или еще что‑ нибудь? А как насчет химической энергии? Или потенциальной? Как рассчитать энергию электрического поля? Что по поводу квантовых полей, тех, к примеру, что сдерживают ядро атома? Их тоже включать? Вопрос за вопросом, и ни на один нет интуитивно понятного ответа.

Сегодня, когда возникают подобные вопросы, физики прибегают к открытому Нётер методу и получают однозначный ответ. Примените этот метод к релятивистским уравнениям движения Эйнштейна, и получите новую энергию, в которую войдет и энергия массы, mc ². Применяя метод Нётер к квантовой физике, получите слагаемые, описывающие квантовую энергию.

Значит ли это, что «старая энергия» не сохранялась? Да, значит; если мы доработали уравнения, то, оказывается, не только частицы движутся иначе, чем предсказывалось ранее, но и вещи, которые, как мы считали, сохраняются, на самом деле не сохраняются. Классическая энергия больше не константа; мы должны включить в нее энергию, скрытую в массе, – и энергию квантовых полей. По традиции «энергией» системы называем сохраняемую величину. Так что, хотя сама энергия и не меняется со временем, меняется ее определение, поскольку мы продолжаем копать и открываем все более глубокие уравнения физики.

Подумайте вот о чем: правда ли те же самые физические уравнения, что работают в Нью‑ Йорке, действительны и в Беркли? Конечно. На самом деле такое наблюдение нетривиально; у него чрезвычайно важные следствия. Мы говорим, что уравнения не зависят от местоположения. Разными могут быть массы или электрические токи – но это все переменные параметры. Ключевой вопрос в том, различаются ли в разных географически местах уравнения, которые описывают физику поведения объектов и полей.

Уравнения, с которыми мы сегодня имеем дело в физике, – те, что входят в стандартную науку и экспериментально проверены, – работают всюду. Кое‑ кто считает это настолько поразительным, что тратит жизнь на поиск исключений из этого правила. Такие люди вглядываются в очень далекие объекты, как отдаленные галактики или квазары, и надеются увидеть, что там законы физики чуть‑ чуть отличаются от наших. До сих пор не удалось найти ничего подобного.

А теперь о замечательном следствии. Та же самая математика Нётер, что работает с уравнениями, не изменяющимися со временем, действительна также и для уравнений, которые не изменяются с местоположением. Воспользовавшись методом Нётер, мы можем найти комбинацию параметров (массы, координат, скорости, силы), которая и с переменой локации остается прежней. Применив эту процедуру к классической физике Ньютона, мы получим величину, равную произведению массы на скорость, – то есть классический импульс. Мы знаем, что импульс сохраняется, а теперь знаем также, почему сохраняется. Дело в том, что уравнения физики инвариантны относительно положения в пространстве.

Той же процедурой можно воспользоваться в теории относительности и квантовой физике, а также в их комбинации, известной как релятивистская квантовая механика. Комбинация, которая не меняется со временем, здесь выглядит немного иначе, но мы все равно называем ее импульсом. Она содержит релятивистские члены – а также электрическое и магнитное поля и квантовые эффекты, – но по традиции мы продолжаем называть ее импульсом.

Тесная связь между временем и энергией переносится и в квантовую физику с ее принципом неопределенности. Согласно квантовой физике, энергия и импульс части системы обычно неопределенные, хотя мы и можем их определить. Вероятно, нет возможности точно измерить энергию конкретного электрона или протона, но принцип не предусматривает аналогичной неопределенности для полной энергии системы. В большом наборе частиц энергия может перемещаться между различными частями системы, но полная ее энергия фиксирована; она сохраняется.

В квантовой физике поведение волновой функции во времени имеет слагаемое eiEt, где I = √ − 1, E – энергия, t – время. Когда Дирак решил свое уравнение для электрона, обнаружил, что в нем содержатся отрицательные энергии; именно это вынудило его предположить, что Вселенная представляет собой бесконечное море электронов с отрицательной энергией. Фейнман нашел этому другую интерпретацию. Он предположил, что отрицательной величиной оказывается не энергия E, а время t, тоже присутствующее в качестве сомножителя. Вместо отрицательной энергии у него появились электроны, движущиеся назад во времени, и Фейнман опознал в них позитроны.

В теории относительности физики видят пространство и время тесно переплетенными, а их комбинация носит название пространство‑ время. Инвариантность физики во времени ведет к сохранению энергии системы. Инвариантность в пространстве ведет к сохранению импульса. Если совместить то и другое, то инвариантность физики в пространстве‑ времени ведет к сохранению величины, известной как энергия‑ импульс. Ученые рассматривают энергию и импульс как два аспекта одного и того же. С этой точки зрения они скажут, что энергия – четвертый компонент четырехмерного вектора энергии‑ импульса. Если три компонента импульса обозначить как px, py и pz, то вектор энергии‑ импульса будет выглядеть как (px, py, pz, E ). Разные физики расставляют эти четыре компонента в разном порядке. Некоторые считают энергию настолько важной, что ставят ее на первое место. Тогда они называют энергию нулевым, а не четвертым компонентом вектора: (E, px, py, pz ).

Электрическое и магнитное поля тоже объединены в теории относительности, но более сложным способом. Вместо трехмерного вектора электрического поля (Ex, Ey, Ez ) и трехмерного вектора магнитного поля, обычно записываемого (Bx, By, Bz ), в теории относительности они становятся компонентами четырехмерного тензора F (от field – поле), который записывается так:

 

 

Матрица кажется сложной, и каждый компонент в ней повторяется дважды, но у нее есть преимущество: чтобы получить новый тензор F в другой системе отсчета, мы пользуемся теми же релятивистскими уравнениями, которые применяли при поиске пространственных координат и времени. Кроме того, вместо включения в наши уравнения отдельно электрического и магнитного полей просто включаем туда F. Уравнения при этом выглядят проще. Это позволило объединить электрическое и магнитное поля – то есть сделать их как бы частями одного более крупного объекта, тензора поля, а не двух отдельных сущностей.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...