Металлы, диэлектрики и полупроводники по зонной теории.
Зонная теория твердых тел позволила с единой точки зрения истолковать существование металлов, диэлектриков и полупроводников, объясняя различие в их электрических свойствах, во-первых, неодинаковым заполнением электронами разрешенных зон и, во-вторых, шириной запрещенных зон. Степень заполнения электронами энергетических уровней в зоне определяется заполнением соответствующих атомных уровней. Если при этом какой-то энергетический уровень полностью заполнен, то образующаяся энергетическая зона также заполнена целиком. В общем случае можно говорить о валентной зоне, которая полностью заполнена электронами и образована из энергетических уровней внутренних электронов свободных атомов, и о зоне проводимости (свободной зоне), которая либо частично заполнена электронами, либо свободна и образована из энергетических уровней внешних «коллективизированных» электронов изолированных атомов. В зависимости от степени заполнения зон электронами и ширины запрещенной зоны возможны четыре случая, изображенные на рис. 1. На рис. 1, а самая верхняя зона, содержащая электроны, заполнена лишь частично. Если в твердом теле имеется зона, лишь частично заполненная электронами, то это тело всегда будет проводником электрического тока. Именно это свойственно металлам. Твердые тела, у которых энергетический спектр электронных состояний состоит только из валентной зоны и зоны проводимости, являются диэлектриками или полупроводниками в зависимости от ширины запрещенной зоны D Е.
Различие между металлами и диэлектриками с точки зрения зонной теории состоит в том, что при 0 К в зоне проводимости металлов имеются электроны, а в зоне проводимости диэлектриков они отсутствуют. Различие же между диэлектриками и полупроводниками определяется шириной запрещенных зон: для диэлектриков она довольно широка (например, для NaCl D Е =6 эВ), для полупроводников — достаточно узка (например, для германия D Е =0,72 эВ). Контакт двух металлов. Внешняя и внутренняя разность потенциалов. Если два различных металла привести в соприкосновение, то между ними возникает разность потенциалов, называемая контактной разностью потенциалов. Итальянский физик А. Вольта (1745—1827) установил, что если металлы А1, Zn, Sn, Pb, Sb, Bi, Hg, Fe, Cu, Ag, Au, Pt, Pd привести в контакт в указанной последовательности, то каждый предыдущий при соприкосновении с одним из следующих зарядится положительно. Этот ряд называется рядом Вольта. Контактная разность потенциалов для различных металлов составляет от десятых до целых вольт. Вольта экспериментально установил два закона: 1. Контактная разность потенциалов зависит лишь от химического состава и температуры соприкасающихся металлов. 2. Контактная разность потенциалов последовательно соединенных различных проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников и равна контактной разности потенциалов, возникающей при непосредственном соединении крайних проводников.
Рассмотрим контакт двух металлов с различными работами выхода А 1 и А 2,. Если A 1 <A 2 (этот случай изображен на рис. 1, а), то уровень Ферми располагается в металле 1 выше, чем в металле 2. Следовательно, при контакте металлов электроны с более высоких уровней металла 1 будут переходить на более низкие уровни металла 2, что приведет к тому, что металл 1 зарядится положительно, а металл 2 — отрицательно. Одновременно происходит относительное смещение энергетических уровней: в металле, заряжающемся положительно, все уровни смещаются вниз, а в металле, заряжающемся отрицательно, — вверх. Этот процесс будет происходить до тех пор, пока между соприкасающимися металлами не установится равновесие, которое, как доказывается в статистической физике, характеризуется совпадением уровней Ферми в обоих металлах (рис. 1, б). Для соприкасающихся металлов уровни Ферми совпадают, а работы выхода А 1 и A 2 не изменяются, то потенциальная энергия электронов в точках, лежащих вне металлов в непосредственной близости к их поверхности (точки А и В на рис. 1, б), будет различной. Следовательно, между точками А и В устанавливается разность потенциалов, которая, как следует из рисунка, равна (1) Разность потенциалов (1), обусловленная различием работ выхода контактирующих металлов, называется внешней контактной разностью потенциалов. Чаще говорят просто о контактной разности потенциалов, подразумевая под ней внешнюю. Если уровни Ферми для двух контактирующих металлов не одинаковы, то между внутренними точками металлов наблюдается внутренняя контактная разность потенциалов, которая, как следует из рисунка, равна (2) Если, например, привести в соприкосновение три разнородных проводника, имеющих одинаковую температуру, то разность потенциалов между концами разомкнутой цепи равна алгебраической сумме скачков потенциала во всех контактах. Она, как можно показать, не зависит от природы промежуточных проводников (второй закон Вольта). Термоэлектрические явления. Согласно второму закону Вольта, в замкнутой цепи, состоящей из нескольких металлов, находящихся при одинаковой температуре, э.д.с. не возникает, т. е. не происходит возбуждения электрического тока. Однако если температура контактов не одинакова, то в цепи возникает электрический ток, называемый термоэлектрическим. Явление возбуждения термоэлектрического тока (явление Зеебека), а также тесно связанные с ним явления Пельте и Томсона называются термоэлектрическими явлениями.0
1. Явление Зеебека (1821). Немецкий физик Т. Зеебек (1770—1831) обнаружил, что в замкнутой цепи, состоящей из последовательно соединенных разнородных проводников, контакты между которыми имеют различную температуру, возникает электрический ток. Рассмотрим замкнутую цепь, состоящую из двух металлических проводников 1 и 2 с температурами спаев Т 1 (контакт А) и Т 2 (контакт В), причем Т 1 > T 2 (рис. 1). Не вдаваясь в подробности, отметим, что в замкнутой цепи для многих пар металлов (например, Сu—Bi, Ag—Сu, Аu—Сu) электродвижущая сила прямо пропорциональна разности температур в контактах: Эта э.д.с. называется термоэлектродвижущей силой. Направление тока при Т 1 >Т 2 на рис. 331 показано стрелкой. Термоэлектродвижущая сила, например для пары металлов медь — константан, для разности температур 100 К составляет всего 4,25 мВ. Если температуры контактов разные, то разными будут и внутренние контактные разности потенциалов. Таким образом, сумма скачков потенциала отлична от нуля, что и приводит к возникновению термоэлектрического тока. Отметим также, что при градиенте температуры происходит и диффузия электронов, которая тоже обусловливает термо-э.д.с. 2. Явление Пельтье (1834). Французский физик Ж. Пельтье (1785—1845) обнаружил, что при прохождении через контакт двух различных проводников электрического тока в зависимости от его направления помимо джоулевой теплоты выделяется или поглощается дополнительная теплота. Таким образом, явление Пельтье является обратным по отношению к явлению Зеебека. В отличие от джоулевой теплоты, которая пропорциональна квадрату силы тока, теплота Пельтье пропорциональна первой степени силы тока и меняет знак при изменении направления тока.
Рассмотрим замкнутую цепь, состоящую из двух разнородных металлических проводников 1 и 2 (рис. 2), по которым пропускается ток I ' (его направление в данном случае выбрано совпадающим с направлением термотока (на рис. 1 при условии T 1 >T 2)). Согласно наблюдениям Пельтье, спай А, который при явлении Зеебека поддерживался бы при более высокой температуре, будет теперь охлаждаться, а спай В — нагреваться. При изменении направления тока I ' спай А будет нагреваться, спай В — охлаждаться.
Объяснить явление Пельтье можно следующим образом. Электроны по разную сторону спая обладают различной средней энергией (полной—кинетической плюс потенциальной). Если электроны пройдут через спай В и попадут в область с меньшей энергией, то избыток своей энергии они отдадут кристаллической решетке и спай будет нагреваться. В спае А электроны переходят в область с большей энергией, забирая теперь недостающую энергию у кристаллической решетки, и спай будет охлаждаться. 3. Явление Томсона (1856). Вильям Томсон (Кельвин), исследуя термоэлектрические явления, пришел к заключению, подтвердив его экспериментально, что при прохождении тока по неравномерно нагретому проводнику должно происходить дополнительное выделение (поглощение) теплоты, аналогичной теплоте Пельтье. Это явление получило название явления Томсона. Его можно объяснить следующим образом. Так как в более нагретой части проводника электроны имеют большую среднюю энергию, чем в менее нагретой, то, двигаясь в направлении убывания температуры, они отдают часть своей энергии решетке, в результате чего происходит выделение теплоты Томсона. Если же электроны движутся в сторону возрастания температуры, то они, наоборот, пополняют свою энергию за счет энергии решетки, в результате чего происходит поглощение теплоты Томсона.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|