Собственные и примесные полупроводники и их проводимость.
⇐ ПредыдущаяСтр 6 из 6 В природе полупроводники существуют в виде элементов (элементы IV, V и VI групп Периодической системы элементов Менделеева), например Si, Ge, As, Se, Те, и химических соединений, например оксиды, сульфиды, селениды, сплавы элементов различных групп. Различают собственные и примесные полупроводники. Собственными полупроводниками являются химически чистые полупроводники, а их проводимость называется собственной проводимостью. Примером собственных полупроводников могут служить химически чистые Ge, Se, а также многие химические соединения: InSb, GaAs, CdS и др. При 0 К и отсутствии других внешних факторов собственные полупроводники ведут себя как диэлектрики. При повышении же температуры электроны с верхних уровней валентной зоны I могут быть переброшены на нижние уровни зоны проводимости II (рис. 1). При наложении на кристалл электрического поля они перемещаются против поля и создают электрический ток. Таким образом, зона II из-за ее частичного «укомплектования» электронами становится зоной проводимости. Проводимость собственных полупроводников, обусловленная электронами, называется электронной проводимостью или проводимостью n -типа (от лат. negative — отрицательный). В результате тепловых забросов электронов из зоны I в зону II в валентной зоне возникают вакантные состояния, получившие название дырок. Во внешнем электрическом поле на освободившееся от электрона место — дырку — может переместиться электрон с соседнего уровня, а дырка появится в том месте, откуда ушел электрон, и т. д. Такой процесс заполнения дырок электронами равносилен перемещению дырки в направлении, противоположном движению электрона, так, как если бы дырка обладала положительным зарядом, равным по величине заряду электрона. Проводимость собственных полупроводников, обусловленная квазичастицами — дырками, называется дырочной проводимостью или проводимостью p- типа (от лат. positive — положительный).
Если концентрации электронов проводимости и дырок обозначить соответственно пe, и nр, то (1) Проводимость полупроводников всегда является возбужденной, т. е. появляется только под действием внешних факторов (температуры, облучения, сильных электрических полей и т. д.). В собственном полупроводнике уровень Ферми находится в середине запрещенной зоны (рис. 2). Действительно, для переброса электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости затрачивается энергия активации, равная ширине запрещенной зоны D E. При появлении же электрона в зоне проводимости в валентной зоне обязательно возникает дырка. Следовательно, энергия, затраченная на образование пары носителей тока, должна делиться на две равные части. Так как энергия, соответствующая половине ширины запрещенной зоны, идет на переброс электрона и такая же энергия затрачивается на образование дырки, то начало отсчета для каждого из этих процессов должно находиться в середине запрещенной зоны. Энергия Ферми в собственном полупроводнике представляет собой энергию, от которой происходит возбуждение электронов и дырок. Вывод о расположении уровня Ферми в середине запрещенной зоны собственного полупроводника может быть подтвержден математическими выкладками. В физике твердого тела доказывается, что концентрация электронов в зоне проводимости (2) где E 2 — энергия, соответствующая дну зоны проводимости (рис. 2), ЕF — энергия Ферми, Т — термодинамическая температура, С 1 — постоянная, зависящая от температуры и эффективной массы электрона проводимости. Эффективная масса — величина, имеющая размерность массы и характеризующая динамические свойства квазичастиц — электронов проводимости и дырок.
Концентрация дырок в валентной зоне (3) где С 2 — постоянная, зависящая от температуры и эффективной массы дырки, Е 1 — энергия, соответствующая верхней границе валентной зоны. Для собственного полупроводника пe=np, то Положив в (2) E–EF» D E/ 2, получим (4) Количество электронов, переброшенных в зону проводимости, а следовательно, и количество образовавшихся дырок пропорциональны á N(Е) ñ. Таким образом, удельная проводимость собственных полупроводников (5) где g 0 — постоянная, характерная для данного полупроводника.
Контакт электронного и дырочного полупроводников (p-n -переход)
Рассмотрим физические процессы, происходящие в p - n -переходе. Пусть донорный полупроводник приводится в контакт с акцепторным полупроводником. Электроны из n -полупроводника, где их концентрация выше, будут диффундировать в p -полупроводник, где их концентрация ниже. Диффузия же дырок происходит в обратном направлении — в направлении р ® п. В n -полупроводнике из-за ухода электронов вблизи границы остается нескомпенсированный положительный объемный заряд неподвижных ионизованных донорных атомов. В p -полупроводнике из-за ухода дырок вблизи границы образуется отрицательный объемный заряд неподвижных ионизованных акцепторов (рис. 1, а). Эти объемные заряды образуют у границы двойной электрический слой, поле которого, направленное от n -области к p -области, препятствует дальнейшему переходу электронов в направлении п ® р и дырок в направлении р ® п. Если концентрации доноров и акцепторов в полупроводниках n - и p -типа одинаковы, то толщины слоев d 1 и d 2 (рис. 1, в), в которых локализуются неподвижные заряды, равны (d 1 =d 2).
При определенной толщине p-n -перехода наступает равновесное состояние, характеризуемое выравниванием уровней Ферми для обоих полупроводников (рис. 1, в). В области p-n- перехода энергетические зоны искривляются, в результате чего возникают потенциальные барьеры как для электронов, так и для дырок. Высота потенциального барьера еj определяется первоначальной разностью положений уровня Ферми в обоих полупроводниках. Все энергетические уровни акцепторного полупроводника подняты относительно уровней донорного полупроводника на высоту, равную еj, причем подъем происходит на толщине двойного слоя d. Толщина d слоя p-n -перехода в полупроводниках составляет примерно 10–6—10–7 м, а контактная разность потенциалов — десятые доли вольт. Носители тока способны преодолеть такую разность потенциалов лишь при температуре в несколько тысяч градусов, т. е. при обычных температурах равновесный контактный слой является запирающим (характеризуется повышенным сопротивлением). Направление внешнего поля, расширяющего запирающий слой, называется запирающим (обратным). В этом направлении электрический ток через p-n -переход практически не проходит. Ток в запирающем спое в запирающем направлении образуется лишь за счет неосновных носителей тока (электронов в p- полупроводнике и дырок в n -полупроводнике). Электрический ток проходит сквозь p-n -переход в направлении от p- полупроводника к n -полупроводнику; оно называется пропускным (прямым) направлением. Таким образом, p-n -переход (подобно на контакте металл — полупроводник) обладает односторонней (вентильной) проводимостью. Полупроводниковые диоды и триоды (транзисторы) Односторонняя проводимость контактов двух полупроводников (или металла с полупроводником) используется для выпрямления и преобразования переменных токов. Если имеется один электронно-дырочный переход, то его действие аналогично действию двухэлектродной лампы—диода. Поэтому полупроводниковое устройство, содержащее один p-n -переход, называется полупроводниковым (кристаллическим) диодом. Полупроводниковые диоды по конструкции делятся на точечные и плоскостные.
Диоды обладают рядом преимуществ по сравнению с электронными лампами (малые габаритные размеры, высокие к.п.д. и срок службы, постоянная готовность к работе и т. д.), но они очень чувствительны к температуре, поэтому интервал их рабочих температур ограничен (от –70 до +120°С). p-n -Переходы обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерирования электрических колебаний. Приборы, предназначенные для этих целей, получили название полупроводниковых триодов или транзисторов. Фотопроводимость полупроводников Фотопроводимость полупроводников — увеличение электропроводности полупроводников под действием электромагнитного излучения — может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей. В первом случае при поглощении фотонов, соответствующих собственной полосе поглощения полупроводника, т. е. когда энергия фотонов равна или больше ширины запрещенной зоны (hn ³ D E), могут совершаться перебросы электронов из валентной зоны в зону проводимости (рис. 1, а), что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок (в валентной зоне). В результате возникает собственная фотопроводимость, обусловленная как электронами, так и дырками.
Таким образом, если (1) Можноопределить красную границу фотопроводимости — максимальную длину волны, при которой еще фотопроводимость возбуждается: Люминесценция твердых тел Люминесценция — неравновесное излучение, избыточное при данной температуре над тепловым излучением тела и имеющее длительность, большую периода световых колебаний. В зависимости от способов возбуждения различают: фотолюминесценцию (под действием света), рентгенолюминесценцию (под действием рентгеновского излучения), катодолюминесценцию (под действием электронов), электролюминесценцию (под действием электрического поля), радиолюминесценцию (при возбуждении ядерным излучением, например g-излучением, нейтронами, протонами), хемилюминесценцию (при химических превращениях), триболюминесценцию (при растирании и раскалывании некоторых кристаллов, например сахара). По длительности свечения условно различают: флуоресценцию (t £10–8с)и фосфоресценцию — свечение, продолжающееся заметный промежуток времени после прекращения возбуждения.
Основной энергетической характеристикой люминесценции является энергетический выход, введенный С. И. Вавиловым в 1924 г., — отношение энергии, излученной люминофором при полном высвечивании, к энергии, поглощенной им. Твердые тела, представляющие собой эффективно люминесцирующие искусственно приготовленные кристаллы с чужеродными примесями, получили название кристаллофосфоров. Явление люминесценции получило широкое применение в практике, например люминесцентный анализ — метод определения состава вещества по характерному его свечению. Этот метод, являясь весьма чувствительным (примерно 10–10 г / см3), позволяет обнаруживать наличие ничтожных примесей и применяется при тончайших исследованиях в биологии, медицине, пищевой промышленностии т. д. Люминесцентная дефектоскопия позволяет обнаружить тончайшие трещины на поверхности деталей машин и других изделий (исследуемая поверхность покрывается для этого люминесцентным раствором, который после удаления остается в трещинах).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|