Х-хромосома и дозовая компенсация
В 1949 г Барр и Бертрам обнаружили в ядрах нейронов кошки интенсивно окрашенные тельца, названные тельцами Барра. Они представляют собой неактивную Х-хромосому. Таким образом, у самок млекопитающих транскрипционно активна только одна Х-хромосома – это феномен компенсации дозы гена. Факультативный гетерохроматин обогащен повторами типа LINE, которые способствуют конденсации хроматина. В ходе раннего развития самок млекопитающих обе Х-хромосомы активны. На предимплантационных стадиях развития эмбриона происходит инактивация Х-хромосомы, унаследованной от отца. Во время имплантации зародыша происходит реактивация и последующая инактивация случайно либо отцовской, либо материнской Х-хромосомы. Иногда наблюдается предпочтительная инактивация отцовской Х-хромосомы (у сумчатых). Процесс инактивации контролируется сложным локусом Х-хромосомы – центром инактивации Xiс. Данный локус содержит ген Xist (Х inactive specific transcript). Продуктом этого гена является некодирующая ядерная РНК размером 16 тн. Ген Xist имеет 3 промотора – Р0, Р1 и Р2. Если транскрипция идет с прототоров Р1 или Р2 – образуется стабильный продукт размером 15 т.п.н., если с промотора Р0 – возникает нестабильный продукт. Переключение транскрипции с Ро на Р1/Р2 коррелирует с началом инактивации Х-хромосомы. В функционально активной Х-хромосоме ген Xist инактивирован за счет метилирования ЦГ-динуклеотидов в промоторе гена. РНК гена Xist не способна переходить с одной Х-хромосомы на другую. РНК Xist присоединяет различные белки, образуя комплексы, которые распределяются вдоль всей Х-хромосомы, запуская ее инактивацию. Они, несомненно, принимают участие в установлении неактивного состояния, так как Х-хромосома, у которой отсутствует район гена Xist, никогда не инактивируется. Если же ген Xist искусственно перенести на аутосому, то она инактивируется.
В период инициации инактивации продукт гена Xist становится стабильным и распространяется вдоль по всей длине Х-хромосомы. Это подавляет транскрипцию генов и приводит к модификации гистонов. После отделения линии герминальных клеток в соматических клетках происходит гиперметилирование инактивируемой хромосомы; неактивное состояние становится необратимым и наследуется в ряду клеточных поколений. В линии герминальных клеток самок ДНК инактивированной Х-хромосомы остается неметилированной и впоследствии хромосома реактивируется незадолго до вхождения клеток в мейоз. В зрелых ооцитах обе Х-хромосомы активны. Выбор того, какая Х-хромосома инактивируется, случаен, но это может регулироваться аллелями Xce (X-linced X controlling element). На линиях мышей было обнаружено три аллеля Хсе – "слабый" Xcea, "промежуточный" Xceb и "сильный" Xcec. В гетерозиготах наиболее часто инактивируются те Х-хромосомы, которые несут более слабый аллель. У гомозигот выбор происходит случайно. Xce локус расположен вблизи Xic. Предполагается, что Xce связывают транс-факторы, регулирующие работу генов в Xic, предопределяя выбор между Х-хромосомами. Ряд генов неактивной Х-хромосомы ускользает от инактивации. Например, избегает инактивации район спаривания с Y-хромосомой. В данном локусе находятся гены, присутствующие и на Х- и на Y-хромосомах: то есть и у XY-самцов таких генов по паре, и у XX-самок их столько же — этим генам не нужна компенсация дозы. Y- хромосома человека Y-хромосома является наименьшей по размеру из 24 хромосом у человека и содержит около 2-3% ДНК гаплоидного генома (60 млн. п.н.). Из всего объема ДНК Y-хромосомы на данный момент секвенировано 21.8 Mb. Короткое плечо Y-хромосомы (Yp) содержит примерно 11 Mb, а длинное плечо (Yq) - 40 Mb ДНК, из которых около 7 Mb приходятся на эухроматиновую часть Yq и около 3 Mb ДНК на центромерную область хромосомы. Большая часть (~60%) длинного плеча Y-хромосомы представляет собой функционально неактивный гетерохроматин, имеющий размер около 24 Mb.
В Y-хромосоме выделяют несколько областей: - псевдоаутосомные области (PAR1 и 2 – 1 – короткое плечо; 2 - длинное); - эухроматиновую область короткого плеча (Yp11); - эухроматиновую область проксимальной части длинного плеча (Yq11); - гетерохроматиновую область дистальной части длинного плеча (Yq12); - область прицентромерного гетерохроматина. Y-хромосома содержит около 100 функциональных генов. Из-за наличия на Х и Y-хромосомах (на теломерах) гомологичных PAR-регионов, половые хромосомы регулярно конъюгируют и рекомбинируют участками этих регионов в зиготене и пахитене профазы I мейоза. Однако большая часть (~95%) Y-хромосомы не принимает участия в рекомбинации, и поэтому называется нерекомбинирующей областью Y-хромосомы (NRY - Non Recombinant Region Y chromosome). Гетерохроматиновая область длинного плеча Y-хромосомы является генетически инертной и содержит различные типы повторов, в том числе высокоповторяющиеся последовательности двух семейств DYZ1 и DYZ2, каждый из которых представлен приблизительно 5000 и 2000 копиями соответственно. На основе сравнительного анализа генов гоносом X и Y в Y-хромосоме выделяют три группы генов: 1. PAR-гены (PAR - Pseudoautosomal Region; гены псевдоаутосомных областей PAR1и PAR2), локализованные в теломерных областях Y-хромосомы; 2. X-Y гомологичные гены, локализованные в нерекомбинирующих областях Yp и Yq; 3. Y-специфичные гены, расположенные в нерекомбинирующих областях Yp и Yq.
Первая группа представлена генами псевдоаутосомных областей (регионов). Они являются идентичными для X- и Y-хромосом и наследуются как аутосомные гены. PAR1-регион расположен на конце короткого плеча Y-хромосомы, он больше по размеру, чем PAR2-регион, его размер приблизительно оценивается в 2,6 Mb. Так как делеции PAR1 приводят к нарушениям конъюгации гоносом во время мейоза у мужчин и могут привести к мужскому бесплодию, предполагается, что PAR-регионы имеют существенное значение для нормального протекания сперматогенеза у мужчин.
Вторая группа генов содержит X-Y-гомологичные, но не идентичные гены, которые локализованы в нерекомбинирующих районах Y-хромосомы (на Yp и Yq). В нее включены 10 генов, представленных на Y-хромосоме одной копией, большинство из них экспрессируются у человека во многих тканях и органах, включая яички и предстательную железу. До сих пор неизвестно, являются ли эти X-Y-гомологичные гены функционально взаимозаменяемыми. Третью группу генов составляют 11 генов, которые расположены в нерекомбинирующем районе Y-гоносомы (NRY). Все эти гены, за исключением гена SRY (Sex-Determining Region Y Chromosome, пол-детерминирующий регион Y-хромосомы), представленного одной копией, являются мультикопийными, и их копии расположены на обоих плечах Y-хромосомы. Некоторые из них являются генами-кандидатами на AZF-фактор (Azoospermia factor, или фактор азооспермии). О точных функциях большинства этих генов известно мало. Продукты, кодируемые генами нерекомбинирующего региона Y-хромосомы, выполняют различные функции, например, среди них имеются факторы транскрипции, цитокиновые рецепторы, протеинкиназы и фосфатазы, которые могут влиять на клеточную пролиферацию и/или передачу сигналов в клетке. Все эти гены и кодируемые продукты требуют дальнейшего изучения в плане их возможной вовлеченности в контроль репродуктивной функции и патогенез опухолей яичка и предстательной железы у мужчин.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|