Определение достоверности различий по t-критерию Стьюдента
/-Критерий Стьюдента относится к параметрическим, следовательно, его использование возможно только в том случае, когда результаты эксперимента представлены в виде измерений по двум последним шкалам — интервальной и отношений [5, 6, 7]. Проиллюстрируем возможности критерия Стьюдента на конкретном примере. Предположим, вам необходимо выяснить эффективность обучения стрельбе по определенной методике. С этой целью проводится сравнительный педагогический эксперимент, где одна группа (экспериментальная), состоящая из 8 человек, занимается по предлагаемой экспериментальной методике, а другая (контрольная) — по традиционной, общепринятой. Рабочая гипотеза заключается в том, что новая, предлагаемая вами методика окажется более эффективной. Итогом эксперимента является контрольная стрельба из пяти выстрелов, по результатам которых (табл. 6) нужно рассчитать достоверность различий и проверить правильность выдвинутой гипотезы. Таблица 6 Что же необходимо сделать для расчета достоверности различий по /-критерию Стьюдента? 1. Вычислить средние арифметические величины X для каждой где Xt — значение отдельного измерения; я — общее число измерений в группе. Проставив в формулу фактические значения из табл. 6, получим:
Сопоставление среднеарифметических величин доказывает, что в экспериментально^ группе данная величина (X, = 35) выше, чем в контрольной (Хк = 27). Однако для окончательного утверждения того, что занимающиеся экспериментальной группы научились стрелять лучше, следует убедиться в статистической достоверности различий (/) между рассчитанными среднеарифметическими значениями.
2. В обеих группах вычислить стандартное отклонение (5) по :де Ximax — наибольший показатель; Ximm — наименьший показатель; К — табличный коэффициент. Порядок вычисления стандартного отклонения (5): — определить Xitrax в обеих группах; — определить Ximia в этих группах; — определить число измерений в каждой группе (л); — найти по специальной таблице (приложение 12) значение коэффициента К, который соответствует числу измерений в группе (8). Для этого в левом крайнем столбце под индексом (и) находим цифру 0, так как количество измерений в нашем примере меньше 10, а в верхней строке — цифру 8; на пересечении этих строк — 2,85, что соответствует значению коэффициента.АГпри 8 испыту-— подставить полученные значения в формулу и произвести необходимые вычисления: 3. Вычислить стандартную ошибку среднего арифметического Для нашего примера подходит первая формула, так как п < 30. Вычислим для каждой группы значения: 4. Вычислить среднюю ошибку разности по формуле: т 5. По специальной таблице (приложение 13) определить досто — вычислить число степеней свободы/= 8 + 8 - 2 = 14;
— найти по таблице (приложение 13) граничное значение tofi5 при/= 14. В нашем примере табличное значение tQ<05 = 2,15, сравним его с вычисленным Г, которое равно 1,7, т.е. меньше граничного значения (2,15). Следовательно, различия между полученными в эксперименте средними арифметическими значениями считаются недостоверными, а значит, недостаточно оснований для того, чтобы говорить о том, что одна методика обучения стрельбе оказалась эффективнее другой. В этом случае можно записать: / = 1,7 при/» > 0,05, это означает, что в случае проведения 100 аналогич- ньгх экспериментов вероятность (р) получения подобных результатов, когда средние арифметические величины экспериментальных групп окажутся выше контрольных, больше 5 %-ного уровня значимости или меньше 95 случаев из 100. Итоговое оформление таблицы с учетом полученных расчетов и с приведением соответствующих параметров может выглядеть следующим образом (табл. 7). Таблица 7 При сравнительно больших числах измерений условно принято считать, что если разница между средними арифметическими показателями равна или больше трех своих ошибок, различия считаются достоверными. В этом случае достоверность различий определяется по следующему уравнению: Как уже говорилось в начале этого раздела, /-критерий Стью-дента может применяться только в тех случаях, когда измерения сделаны по шкале интервалов и отношений. Однако в педагогических исследованиях нередко возникает потребность определять Достоверность различий между результатами, полученными по Шкале наименований или порядка. В таких случаях используются непараметрические критерии. В отличие от параметрических непараметрические критерии не требуют вычисления определенных параметров полученных результатов (среднего арифметического, стандартного отклонения и т.п.), чем в основном и связаны их названия. Рассмотрим сейчас два непараметрических критерия для определения достоверности различий между независимыми результатами, полученными по шкале порядка и наименований.
выбора критериев при зависимых (сопряженных, связанных) и независимых результатах можно воспользоваться таблицей (приложение 11).
Наряду с относительно простыми способами сравнения одной выборки с другой в исследовательской работе встречаются и более сложные задачи, когда приходится сравнивать одновременно несколько выборок, объединяемых в единый статистический комплекс. В этих случаях используется дисперсионный анализ.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|